FINAL REPORT

DULUTH CORROSION INVESTIGATION DULUTH HARBOR

Prepared for: US Army Corps of Engineers

Detroit District

DACW35-01-D-0006

Delivery Order Number: 0044

Prepared by:

Altech Environmental Services, Inc. 17350 W. Ten Mile Road, Suite 200 Southfield, Michigan, 48075 248-559-5500 Altech Project No. 9201-044

January 2007

Statement of Independent Technical Review (ITR)

COMPLETION OF INDEPENDENT TECHNICAL REVIEW

Altech has completed the Duluth Corrosion Investigation, Duluth, Minnesota. Notice is hereby given that an independent technical review has been conducted that is appropriate to the level of risk and complexity inherent in the project, as defined in the Quality Control Plan. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, was verified. This included review of assumptions; methods, procedures, and material used in analyses; alternatives evaluated; the appropriateness of data used and level of data obtained; and reasonableness of the results, including whether the product meets the customer's needs consistent with law and existing USACE policy.

Prepared by	
(Signature)	(Date)
Mariah Hope P.E.	(Date)
Project Engineer	
(Signature)	(Date)
Mark E. Resch L.P.G	
Independent Technical Review	

TABLE OF CONTENTS

1.0	Introduction	1									
1.1	Project Description	1									
1.2											
1.3	Limitations	1									
2.0	Scope of Work	2									
2.1	Water Quality Testing and Collection	3									
2.2	Steel Corrosion and Pitting	3									
3.0	Weather/Climatic Conditions	4									
4.0	Sample Collection	5									
5.0	Control of the Contro										
6.0	AMI Corrosion Investigation Report Summary										
	LIST OF TABLES										
	LIST OF TABLES										
Table	1: Sample Location Designations	2									
	2: Water Quality Sample Parameters										
Table	e 3: Weather Conditions for Water Quality Sampling	4									
Table	4: GPS Locations for Sample Locations	5									

LIST OF APPENDICES

ii

Appendix A – Sai	mple Loc	ation Pl	lates
------------------	----------	----------	-------

Appendix B – Water Quality Field Data Federal Structures
Appendix C – Water Quality Field Data Non-Federal Structures

Appendix D – Trace Chemical Analytical Report

Appendix E – AMI Corrosion Investigation Report

1.0 Introduction

The United States Army Corps of Engineers, Detroit District (USACE) retained Altech Environmental Services, Inc. (Altech) as an A/E Contractor to provide and oversee water quality and diving services at designated sampling locations in Duluth Harbor, Superior Bay, St. Louis Bay, Spirit Lake, and St. Louis River. Duluth Harbor is surrounded by Duluth, Minnesota to the west, and Superior, Wisconsin to the east.

Altech Environmental Services, Inc. (Altech) is pleased to present this Duluth Corrosion Investigation report for Duluth Harbor. The purpose of the project was to evaluate water quality at Duluth Harbor, Minnesota in areas of corrosion on steel structures. Work was performed for the USACE under Contract No. DACW35-01-D-0006, Delivery Order No. 0044.

1.1 Project Description

The purpose of the project was to characterize water quality and determine steel corrosion rates of hydraulic steel structures in the vicinity of areas identified by the USACE. This project collected and tested water quality samples and tested water columns at specified locations in and around Duluth Harbor. This project also documented the existing condition of steel structures with respect to pitting and corrosion at specified locations using non-destructive test methods.

1.2 Site Description

Duluth Harbor is a relatively large port located on the southwest shore of Lake Superior in Duluth, Minnesota and Superior, Wisconsin. This harbor serves a large number of both commercial ships and recreational boaters providing access to Lake Superior. The St. Louis River is the main tributary, which flows into the harbor. Refer to Plates 1 through 7 in Appendix A for a depiction of the 27 Federal corrosion monitoring locations. No plates were provided by the USACE for the 17 additional non-Federal corrosion monitoring locations. The furthest sample point located upstream from Duluth Harbor on the St. Louis River is the Oliver Bridge.

1.3 Limitations

The USACE provided the following changes to the testing and documentation locations prior to the commencement of fieldwork:

- A. Delete the "web" (portion of the sheet piling between the inner and outer flanges) location from data collection location DE2.
- B. Delete data collection locations EP1w, EP2w, CGA2o, and CGB.
- C. Relocate data collection locations CGA1o.
- D. Add alternate point 328 in place of CGB (identified as CGB in report).

Mr. John Larson of the US Army Corps, Duluth Office, agreed approved AMI's GPS coordinate acquisition process and accuracy of the unit. Mr. Larson felt no further calibration was necessary at that time.

January 2007 1


Water quality samples were collected from a boat and not from the land. The elevation of the boat fluctuated both with the water datum at the time and the amount of wind generated waves. The waves during the sampling events were as high as 1.5-feet. This wave action means that all sample depths are approximate.

2.0 Scope of Work

Water quality testing and samples were collected from the 27 Federal and 17 non-Federal corrosion monitoring locations (44 total locations) within and in the vicinity of Duluth Harbor, Minnesota. Sample locations were provided by the USACE for the Federal Structures and are included in Appendix A –Sample Location Plates and on Table 1. Corrosion monitoring was only performed at the 27 Federal monitoring locations. Harbor sample locations and designations were recorded on the USACE provided data entry sheet. Sample locations were recorded with a Global Positioning System (GPS) unit and their proximity were permanently marked for the 27 Federal corrosion monitoring locations and temporarily marked with paint for the 17 non-Federal corrosion monitoring locations. Sampling location designations are depicted on Table 1.

Table 1: Sample Location Designations

	Original Sample Locat	ions	Addendum	1 Locations
Duluth Entry 1	Superior Entry 1	Erie Pier 1	DSPA Berth 1	Spirit Lake Marina
Duluth Entry 2	Superior Entry 2	Eire Pier 2	DSPA Berth 4	Oliver Bridge
Duluth Entry 3	Superior Entry 3	USACE Vessel Yard 1	DSPA Berth 6	Midwest Energy
Duluth Entry 4	Superior Entry 4	USACE Vessel Yard 2	CN/DMIR Two Harbors	Cenex/Harvest States
Duluth Entry 5 Superior Entry 5		Coast Guard Cell - CGA	William A. Irvin Slip	Cutler Magner
Duluth Entry 6	Superior Entry 6	Coast Guard Cell - CGB	DECC	Lakehead Boat Basin
Duluth Entry 7	Superior Entry 7	Coast Guard Cell - CGC	Cargill	Community Sailing Dock
Duluth Entry 8	Superior Entry 8		Hallett Dock 5	
Duluth Entry 9	Superior Entry 9		Hallett Dock 7	
Duluth Entry 10	Superior Entry 10		Bong Bridge Cell	

2.1 Water Quality Testing and Collection

Water quality samples were obtained at each of the USACE identified sample locations. A field log was maintained for all water quality sample locations that resulted in the recording of the following items of information while sampling:

- A. Station identification number.
- B. Sample collection date, time and the names of the sample team.
- C. Depth at each sample location corrected to low water datum.
- D. Type of sampling equipment used.
- E. GPS coordinates.
- F. Identification number of the USACE sample location.

Analyzed water quality parameters are listed in Table 2 noted below. Field parameters were recorded from various depth increments for field parameter analysis (depth increments indicated on USACE plate number 8 of 9 located in Appendix A). This data was collected using a Hydrolab Corporation Quanta water quality meter. The meter has a pressure sensor for determining sample depth and several sensors that recorded the above noted field parameter.

Laboratory analysis involved the use of a Geotech Environmental Equipment, Inc. peristaltic pump with the sampler lowered to an approximate depth of four feet below the International Great Lakes Datum (IGLD) of 1955. Water samples were directly discharged by the pump to laboratory supplied containers. Laboratory analysis was performed by Trace Analytical Laboratories, Inc. (Trace), a USACE certified lab.

Table 2: Water Quality Sample Parameters

Field Parameters	Laboratory Parameters
РН	Alkalinity
Dissolved oxygen	Chloride Ions
Conductivity	Sulfate Ions
Temperature	Total Suspended Solids (TSS)
	Hardness
	Total Iron

2.2 Steel Corrosion and Pitting

Corrosion measurements were made at the 27 Federal scope of work locations. Work was performed by Altech subcontractor AMI Consulting Engineers, PA, of Duluth Minnesota. The extent of steel sheet piling (SSP) and other steel plate corrosion were determined by the use of non-destructive test methods. Three columns of data were required at each test location. Each

January 2007 3

column of data required testing at ten (10) different elevations, as applicable as shown on Plate 8 in Appendix A.

Each test location was composed of either a 6-inch by 6-inch square area or a 4-inch by 4-inch square area that were restricted by the flange width of SSP at any given column location. The perimeter of each square where data was measured was photographed and permanently marked or scribed for future data measurements.

Within each 4-inch or 6-inch square area of corrosion measurement there were a total of ten (10) data entries. Each square area was photographed and had the following data entries described as follows:

- A Overall thickness of steel plate, which should be the original thickness of the steel plate installed.
- B Measurement of the corrosion pit depth of four (4) representative pits within the steel plate area. The pit depth shall be as referenced from the plane of the original face of steel plate. Label each of the representative pits as 1, 2, 3, and 4 as shown on Plate 9 in Appendix A.
- C Measure the representative pit diameter corresponding to the same representative corrosion pit depths noted above.
- D Determine a qualitative indicator that rates each square as highly corroded (75-100% of square is pitted); moderately corroded (50-75% of square is pitted); low corrosion (less than 50% of square area is pitted). See Plate 9 in Appendix A for an example of labeling the pits and a representative rating.

3.0 Weather/Climatic Conditions

Corrosion investigation occurred from August 17, 2006 through September 1, 2006. Water quality sampling occurred from September 19, 2006 through September 24, 2006. Weather for the six days of water quality sampling is summarized in Table 3.

Table 3: Weather Conditions for Water Quality Sampling

Date	Temperature, °F	Wind Speed, mph	Wind Direction	Wind Gusts, mph	Condition
September 19	36-52	12	NW	31	Overcast
September 20	33-57	8	WNW	24	Overcast
September 21	36-59	9	SE	23	Overcast
September 22	50-53	18	Е	43	Rain
September 23	44-55	11	NNE	28	Rain
September 24	37-62	9	WNW	24	Overcast

Water Datums were obtained from Station 9099064, Duluth, Lake Superior from the National Oceanic and Atmospheric Administration's (NOAA) website on a regular basis. Water levels during the sampling event ranged from 600.75 to 601.94 feet MSL.

January 2007 4

4.0 Sample Collection

Sampling services were performed from Tuesday September 19, 2006, through Sunday September 24, 2006, with the assistance of AMI. The sampling crew consisted of Altech representatives Mark Resch and Mariah Hope, and AMI's boat captain. Altech provided project supervision, including direction of all sampling activities, sample handling, descriptive work, field documentation, photography, data logging, and health and safety issues.

Water quality samples were collected over the six-day period beginning on September 19, 2006, and concluding on September 24, 2006. No samples were collected on September 23, 2006 due to heavy rains and winds. Water quality samples (see Table 1 for sampling nomenclature and Attachment A for sample locations) were collected from Duluth Harbor in the immediate vicinity of the monitoring locations pre-selected by the USACE. Sample locations were located by GPS and permanently marked for future reference. Sample locations are listed in Table 4 below:

Table 4: GPS Coordinates for Sampling Locations

Investigation Site	Identifier	North	West	Mark Location height above IGLD
	DE1	N46°46.854	W92°05.313	2 FT
	DE2	N46°46.852	W92°05.306	2 FT
	DE3	N46°46.810	W92°05.406	2 FT
	DE4	N46°46.777	W92°05.510	2 FT
Duluth Enter	DE5	N46°46.766	W92°05.670	2 FT
Duluth Entry	DE6	N46°46.682	W92°05.597	2 FT
	DE7	N46°46.737	W92°05.475	2 FT
	DE8	N46°46.779	W92°05.368	2 FT
	DE9	N46°46.791	W92°05.305	2 FT
	DE10	N46°46.804	W92°05.281	2 FT
ACOE Vessel Yard	VY1	N46°46.513	W92°05.540	2 FT
ACOE vesser yard	VY2	N46°46.517	W92°05.524	2 FT
Erie Pier	EP1	N46°44.289	W92°08.666	2 FT
Erie Pier	EP2	N46°44.317	W92°08.717	2 FT
	CGA1	N46°44.102	W92°08.681	2 FT
Coast Guard Cells	CGC1	N46°43.200	W92°08.617	2 FT
	CGB	N46°42 25.63	W92°02 07.52	2 FT

Table 4: GPS Coordinates for Sample Locations Cont.

Investigation Site	Identifier	North	West	Mark Location height above IGLD
	SE1	N46°42.613	W92°00.380	2 FT
	SE2	N46°42.699	W92°00.465	2 FT
	SE3	N46°42.510	W92°00.867	2 FT
	SE4	N46°42.477	W92°00.900	2 FT
Cupariar Entry	SE5	N46°42.426	W92°01.014	2 FT
Superior Entry	SE6	N46°42.408	W92°01.191	2 FT
	SE7	N46°42.442	W92°00.760	2 FT
	SE8	N46°42.443	W92°00.784	2 FT
	SE9	N46°42.402	W92°00.883	2 FT
	SE10	N46°42.279	W92°01.007	2 FT
	Berth 1	N46°45.495	W92°06.151	3 FT
DSPA	Berth 4	N46°45.480	W92°05.776	3 FT
	Berth 7	N46°45.171	W92°05.702	3 FT
William A Irvin Slip		N46°47.018	W92°05.865	2 FT
DECC		N46°46.765	W92°05.906	2 FT
Cargill		N46°46.166	W92°06.312	4 FT
Hallett Dock 5		N46°44.734	W92°07.943	1'-6"
Bong Bridge Cell		N46°43.882	W92°08.668	3 FT
Hallett Dock 7		N46°43.173	W92°09.720	No mark
Spirit Lake Marina		N46°42.433	W92°12.172	2 FT
Oliver Bridge		N46°39.391	W92°12.165	top of sheet = 1FT
Midwest Energy		N46°44.571	W92°06.891	2 FT
	CHS 1	N46°44.399	W92°05.965	2 FT
Cenex/ Harvest States	CHS 2	N46°44.377	W92°06.155	2 FT
	CHS 3	N46°44.406	W92°06.151	2 FT
Cutler Magner		N46°43.990	W92°04.492	4 FT
	1	N46°46.457	W92°05.563	2'-6"
Lakehead Boat Basin	2	N46°46.454	W92°05.552	2 FT
Community Sailing Dock		N46°43.932	W92°03.408	2 FT
CN/ DMIR Two Harbors		N47°00.931	W91°40.258	2 FT

Water depth quality measurements (pH, dissolved oxygen, conductivity and temperature) were performed at the pre-selected target depths of surface, -2 feet, -4 feet, -6 feet, -8 feet, -10 feet, -15 feet, and -20 feet below low water datum. All data measurements were recorded on a field form. Results from the field sampling events can be found in Appendix B for the 27 Federal and Appendix C for the additional 17 non-Federal corrosion monitoring locations.

5.0 Laboratory Analysis

Water quality parameters that were sent to Trace included alkalinity, chloride, sulfate, total dissolved solids, hardness and total iron. Samples were collected –4 feet below low water datum at all sites except one. The Community Boat Basin had a depth of 3.7 feet below low water datum, resulting in the water quality sample being collected at –3 feet below low water datum to lessen any particulate matter from the bottom sediments.

Upon containerization of project samples, the containers were placed in rigid coolers, maintained under ice, and subject to appropriate chain-of-custody protocols until delivered to Trace in Muskegon, Michigan.

Results from the chemical analytical report can be found in Appendix D, and with results also presented on the USACE data entry sheets found in Appendices B and C.

6.0 AMI Corrosion Investigation Report Summary

AMI Consulting Engineers conducted the corrosion investigation from August 17, 2006 through September 1, 2006. A copy of their report including photographs and field logs are included in Appendix E. A general summary of the data from their report is provided in the following paragraphs.

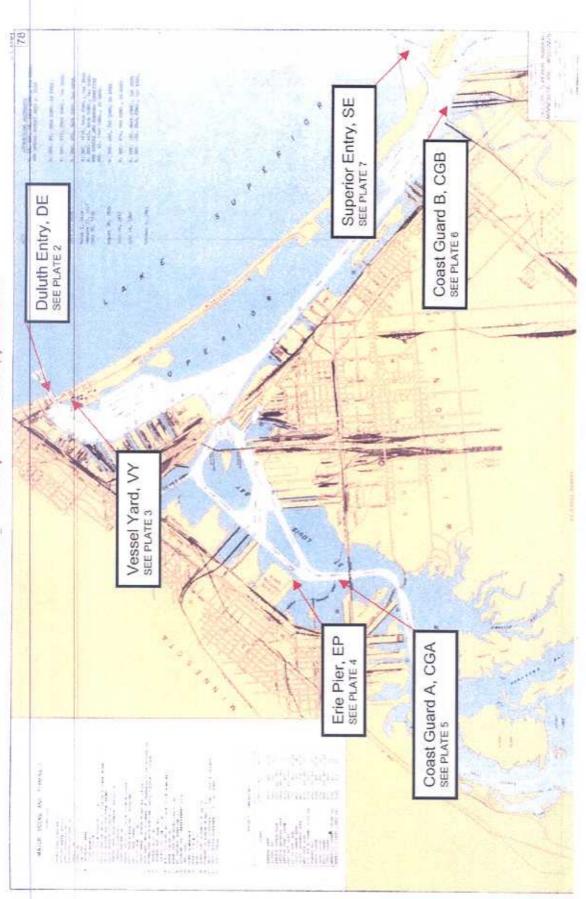
The previously reported corrosion conditions, as discussed in the 2004 ACOE Document ERDC/CERL SR-05-3 on the Fresh Water Corrosion in the Duluth – Superior Harbor, indicate the majority of the structures within the harbor confines and throughout the Superior Entry, with notable physical changes in marine growth, pitting penetration and corrosion type, exist throughout the Duluth Entry.

Penetration of the pitting within the harbor structures 0 to -4 foot zone from the IGLD water levels was typically 1/4 of an inch to more than 3/8 of an inch on the older structures that were installed prior to the 1980's. Due to this degree of pitting on all the Coast Guard Cells inspected, perforations were found from -1 to -2 feet IGLD. The accelerated corrosion problem became very evident in looking at the new steel sheet piling installed this year on the Superior Entry, with orange nodules already covering over 50% of the sheet pile surfaces. The other sheet pile inspected at the Superior Entry was less than five years old and had a degree of overall and pitting relative to its age. The superior entry corrosion on the oldest steel near the Lake Superior side of the entry was consistent with the rest of the harbor steel inspected with a high concentration of deep pits on the ice plates.

From the inspection data it appears that the overall level of corrosion and pitting drops from the main lower harbor area towards Lake Superior through the Duluth Entry. Physical

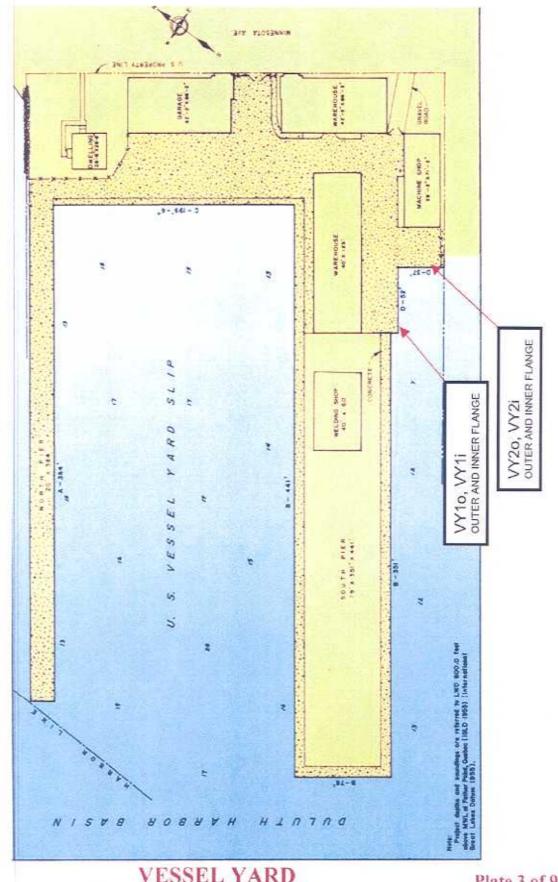
January 2007 7

changes in corrosion occurred between the middle sample points at the Duluth Entry where the type of marine growth and the type of corrosion began its visible transition. Although pitting was present on all parts within the Duluth Entry, many of the pits measured from the DE3 and DE8 points within the entry to the Lake entrance did not have active orange nodules consistently present. Instead the pits and general steel surface were covered with a thin to heavy rust scale, with occasional orange nodules present. Outside the Entry the pit sizes were smaller in diameter and had less penetration as shown by the data.


At this time we believe the Duluth Entry data should be evaluated very carefully to take into account all the physical changes and differences from the typically seen harbor corrosion. We would recommend further investigation of this area to provide a more complete understanding of the transition in corrosion type, marine growth, currents and water quality changes. The data from the other areas investigated should be carefully evaluated based on all data submitted for the different areas inspected.

January 2007 8

Appendix A. Sample Location Plates



Structure Locations for Corrosion Study Duluth-Superior Harbor, MN/WI

Plate 1 of 9 JUNE 2006

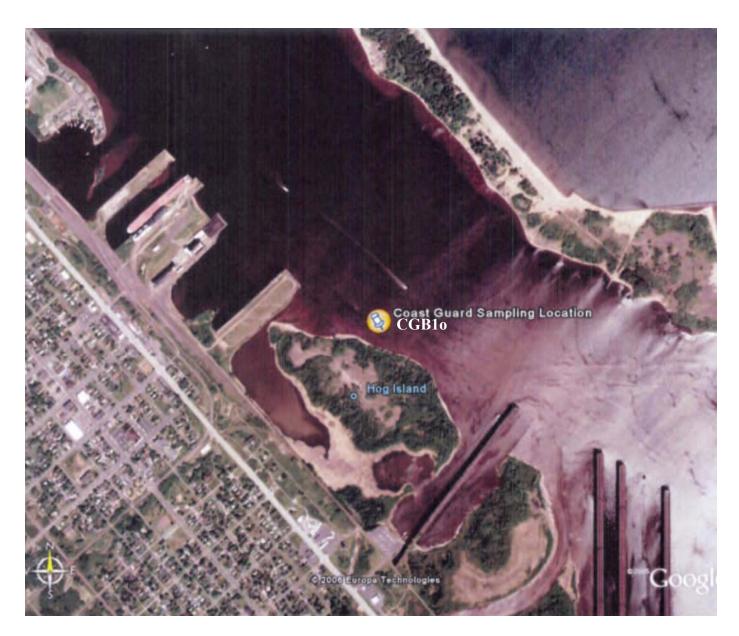
DULUTH ENTRY

DATA COLLECTION LOCATIONS FOR DULUTH HARBOR CORROSION STUDY Plate 2 of 9
JUNE 2006
Revised 13 Jul 04

VESSEL YARD

DATA COLLECTION LOCATIONS FOR **DULUTH HARBOR CORROSION STUDY**

Plate 3 of 9 **JUNE 2006**



ERIE PIER

DATA COLLECTION LOCAITONS FOR DULUTH HARBOR CORROSION STUDY

Plate 4 of 9 December 2006

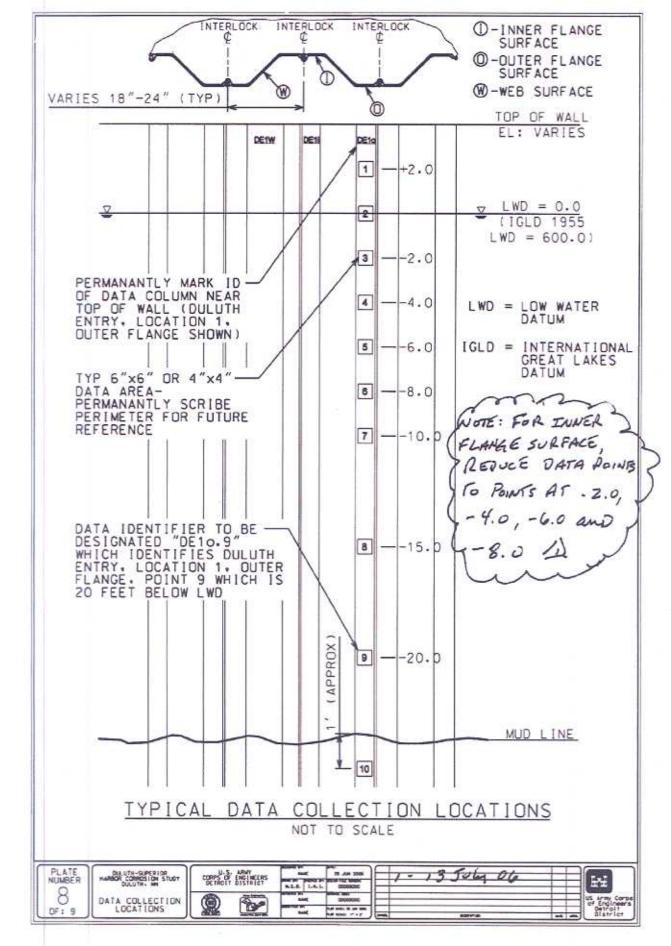
COAST GUARD 2 STRUCTURE

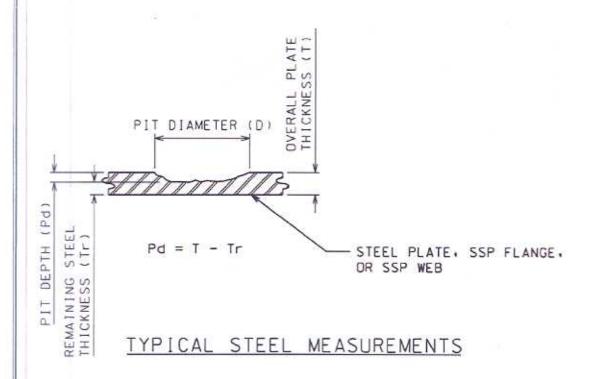
DATA COLLECTION LOCAITONS FOR DULUTH HARBOR CORROSION STUDY

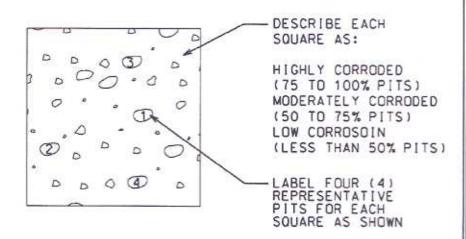
Plate <u>5</u> of <u>9</u> December 2006

COAST GUARD STRUCTURES

DATA COLLECTION LOCATION FOR


PULLUTH HARBOR CORROSION STUDY


Prate 6 of 9 1350/06


SUPERIOR ENTRY

DATA COLLECTION LOCATIONS FOR DULUTH HARBOR CORROSION STUDY

Plate <u>7</u> of <u>9</u> JUNE 2006

TYPICAL PHOTOGRAPH REQ'D

(4"x4" MODERATELY CORRODED SQUARE SHOWN)

PLATE	DIALUTH-SUPERIOR	CORPS 0	ARMY	and and	TF APR 2009				(A)
NUMBER	UMBER HARSON CORRESION STUDY		F ENCINEERS T DISTRICT	ALA IAI	DESCRIPTION OF THE PERSONS		=	Ħ	퍞
9 1	DATA COLLECTION	(6)	(4)	NAME.	DESCRIPTION OF THE PERSON OF T		_	Ħ	us army Cor
OF: 9	SCOPE OF WORK	200	3	THE REAL PROPERTY.		12.00-	94		Detroit Glassics

Appendix B. Water Quality Field Data Federal Structures

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Range ell Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CGA10 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/18/06 Water quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corr	osion Da	ata					Water Qเ	uality Data	3	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp	
1 (+2.0)	0.375										\times	><	> <	$>\!\!<$	
2 (0.0)	0.344	0.156	0.625	0.094	0.625	0.094	0.750	0.219	0.500	HIGH	7.72	7.77	0.261	61.6	
3 (-2.0)	0.304	0.179	0.375	0.116	0.250	0.116	0.500	0.179	0.250	HIGH	7.99	7.36	0.261	61.6	
4 (-4.0)	0.300	0.112	0.375	0.237	0.250	0.237	0.250	0.237	0.250	HIGH	8.04	7.30	0.261	61.6	
5 (-6.0)	0.320	0.257	0.250	0.257	0.188	0.257	0.188	0.257	0.125	HIGH	8.09	7.27	0.260	61.6	
6 (-8.0)	0.378	0.315	0.250	0.338	0.188	0.315	0.250	0.315	0.188	HIGH	8.09	7.50	0.260	61.5	
7 (-10.0)	0.320	0.290	0.125	0.290	0.188	0.257	0.250	0.280	0.125	HIGH	8.08	7.41	0.257	61.4	
8 (-15.0)															
9 (-20.0)															
10 (*)										VA	Bottom was measured at 14.5 ft.				

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 19 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 90 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.37 mg/L

Sulfate lons: 28 mg/L

Alkalinity: 86 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Range Cell Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CGB10 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/31/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corr	osion D	ata					Water Quality Data			
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp	
1 (+2.0)	0.375										\times	> <	>>	> <	
2 (0.0)	0.307	0.182	0.500	0.057	0.500	hole	0.625	hole	0.625	HIGH	8.11	8.44	0.192	61.0	
3 (-2.0)	0.379	0.191	0.500	0.254	0.500	hole	0.375	hole	0.500	HIGH	8.20	8.40	0.192	61.0	
4 (-4.0)	0.363	0.303	0.250	0.300	0.375	0.313	0.500	0.293	0.375	HIGH	8.15	8.41	0.192	60.9	
5 (-6.0)	0.350	0.310	0.250	0.287	0.250	0.300	0.500	0.287	0.375	HIGH	8.15	8.45	0.193	60.9	
6 (-8.0)															
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)													easured at 7	4	

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 13 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 66 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: 0.25 mg/L

Sulfate lons: 20 mg/L

Alkalinity: 66 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Range Cell **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: CGC10 P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)Data Collection Date: Corrosion 8/18/06 Water quality 9/20/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	1
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.375										\times	>>	>>	> <
2 (0.0)	0.346	0.158	0.500	0.089	0.500	0.208	0.500	0.096	0.500	HIGH	8.16	8.25	0.218	60.0
3 (-2.0)	0.278	0.122	0.375	0.153	0.750	0.153	0.500	0.065	0.625	HIGH	8.19	8.22	0.218	60.1
4 (-4.0)	0.337	0.274	0.250	0.297	0.250	0.274	0.375	0.287	0.125	HIGH	8.20	8.22	0.218	60.1
5 (-6.0)											8.18	8.14	0.217	60.0
6 (-8.0)											8.18	8.15	0.217	60.0
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Bott	om was me	asured at 8.	5 ft.

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions: 13 mg/L **Total Suspended Solids:** Notes: 1. See Plates 1 through 9 for locations of data. <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 98 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 8.0 mg/L

> Sulfate lons: 15 mg/L

> > Alkalinity: 89 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE1i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	uality Dat	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.608										\times	><	>>	$>\!\!<$
2 (0.0)	0.593	0.588	0.063	0.583	0.063	0.588	0.063	0.588	0.063	LOW	Dat	a is located	on the DE1	o file
3 (-2.0)	0.578	0.453	0.375	0.515	0.375	0.538	0.375	0.538	0.188	MOD				
4 (-4.0)	0.608	0.545	0.500	0.518	0.500	0.518	0.375	0.558	0.250	MOD				
5 (-6.0)	0.613	0.513	0.750	0.550	0.375	0.550	0.500	0.563	0.375	MOD				
6 (-8.0)	0.628	0.588	0.375	0.608	0.188	0.608	0.250	0.588	0.188	MOD				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: DE10 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	ality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.611										\times	><	> <	\times
2 (0.0)	0.596	0.591	0.063	0.591	0.063	0.556	0.125	0.591	0.063	LOW	7.86	8.82	0.096	61.5
3 (-2.0)	0.569	0.506	0.125	0.506	0.125	0.519	0.125	0.529	0.188	MOD	8.19	8.94	0.096	61.4
4 (-4.0)	0.593	0.53	0.188	0.53	0.375	0.543	0.188	0.543	0.188	MOD	8.21	8.94	0.096	61.4
5 (-6.0)	0.609	0.519	0.25	0.519	0.063	0.546	0.25	0.546	0.188	HIGH	8.21	9.01	0.096	61.4
6 (-8.0)	0.608	0.545	0.188	0.545	0.125	0.558	0.188	0.568	0.188	HIGH	8.21	9.06	0.096	61.4
7 (-10.0)	0.618	0.588	0.125	0.555	0.25	0.578	0.125	0.578	0.25	HIGH	8.19	9.10	0.096	61.4
8 (-15.0)	0.613	0.55	0.25	0.55	0.25	0.543	0.25	0.563	0.188	HIGH	8.20	9.17	0.096	60.9
9 (-21.0)	0.616	0.553	0.188	0.576	0.125	0.586	0.125	0.566	0.188	HIGH				
10 (*)										\A/a4a		om was mea		

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 48 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 4.1 mg/L

Alkalinity: 46 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE2i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	ality Dat	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.602										\mathbb{X}	><	>>	> <
2 (0.0)	0.604	0.564	0.188	0.541	0.250	0.541	0.188	0.541	0.188	MOD	Dat	a is located	on the DE2	o file
3 (-2.0)	0.618	0.508	0.500	0.518	0.375	0.528	0.375	0.548	0.250	HIGH				
4 (-4.0)	0.606	0.506	0.500	0.496	0.500	0.543	0.250	0.506	0.500	HIGH				
5 (-6.0)	0.604	0.504	0.250	0.541	0.188	0.564	0.250	0.554	0.188	HIGH				
6 (-8.0)	0.612	0.562	0.188	0.572	0.188	0.562	0.188	0.572	0.250	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Total Iron:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: DE20 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.613										\times	> <	> <	> <
2 (0.0)	0.622	0.559	0.188	0.582	0.125	0.582	0.250	0.559	0.125	HIGH	8.11	8.72	0.096	61.6
3 (-2.0)	0.614	0.551	0.250	0.534	0.250	0.544	0.375	0.551	0.125	HIGH	8.24	8.74	0.096	61.6
4 (-4.0)	0.603	0.523	0.188	0.503	0.188	0.493	0.375	0.533	0.500	HIGH	8.21	8.87	0.096	61.6
5 (-6.0)	0.605	0.515	0.375	0.542	0.188	0.542	0.250	0.542	0.375	HIGH	8.19	8.99	0.096	61.6
6 (-8.0)	0.615	0.575	0.250	0.552	0.250	0.552	0.250	0.552	0.250	HIGH	8.19	9.09	0.096	61.7
7 (-10.0)	0.602	0.539	0.125	0.539	0.188	0.539	0.188	0.562	0.125	HIGH	8.19	9.16	0.096	61.5
8 (-15.0)	0.612	0.549	0.188	0.582	0.188	0.602	0.250	0.592	0.125	HIGH	8.19	9.20	0.096	61.6
9 (-20.0)	0.621	0.591	0.125	0.601	0.125	0.591	0.250	0.601	0.188	HIGH	8.19	9.22	0.096	61.7
10 (-31)	0.623	0.583	0.125	0.583	0.188	0.553	0.250	0.583	0.125	MOD	Botto	om was mea	asured at 25	5 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 45 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: <0.20 mg/L

Sulfate lons: 4.1 mg/L

Alkalinity: 46 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 3i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	uality Dat	а
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.628										\times	><	><	$>\!\!<$
2 (0.0)	0.619	0.579	0.250	0.569	0.250	0.539	0.250	0.549	0.188	HIGH	Dat	a is located	on the DE3	o file
3 (-2.0)	0.602	0.539	0.625	0.552	0.625	0.532	0.500	0.539	0.188	HIGH				
4 (-4.0)	0.604	0.541	0.188	0.554	0.188	0.541	0.250	0.541	0.125	HIGH				
5 (-6.0)	0.596	0.556	0.188	0.471	0.250	0.556	0.063	0.546	0.188	HIGH				
6 (-8.0)	0.619	0.539	0.063	0.556	0.125	0.556	0.250	0.556	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)										101.1	<u> </u>		1051	

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: DE30 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.607										\times	><	> <	$>\!\!<$
2 (0.0)	0.604	0.564	0.188	0.574	0.125	0.544	0.250	0.541	0.125	HIGH	8.10	8.72	0.096	61.5
3 (-2.0)	0.595	0.515	0.250	0.532	0.188	0.515	0.250	0.532	0.500	HIGH	8.18	8.77	0.097	61.5
4 (-4.0)	0.597	0.507	0.250	0.497	0.375	0.507	0.375	0.537	0.375	HIGH	8.22	8.88	0.096	61.5
5 (-6.0)	0.605	0.542	0.250	0.565	0.125	0.555	0.125	0.565	0.250	HIGH	8.20	9.00	0.096	61.5
6 (-8.0)	0.604	0.541	0.188	0.564	0.125	0.554	0.125	0.554	0.125	HIGH	8.20	9.00	0.096	61.5
7 (-10.0)	0.618	0.555	0.188	0.578	0.250	0.555	0.250	0.555	0.250	HIGH	8.19	9.03	0.096	61.5
8 (-15.0)	0.611	0.571	0.125	0.601	0.188	0.531	0.063	0.548	0.125	MOD	8.20	8.97	0.096	61.5
9 (-20.0)	0.612	0.572	0.188	0.592	0.125	0.572	0.125	0.562	0.250	LOW	8.19	8.90	0.096	61.5
10 (-30.0)	0.615	0.575	0.500	0.585	0.375	0.565	0.250	0.575	0.188	LOW	Botto	om was mea	asured at 29	e feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

<10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 46 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: <0.20 mg/L

Sulfate lons: 4.2 mg/L

Alkalinity: 46 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: DE4i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	uality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.606										\times	><	$>\!\!<$	$>\!\!<$
2 (0.0)	0.581	0.551	0.125	0.561	0.250	0.541	0.250	0.551	0.125	MOD	Dat	a is located	on the DE4	o file
3 (-2.0)	0.585	0.505	0.625	0.522	0.375	0.522	0.250	0.522	0.250	HIGH				
4 (-4.0)	0.592	0.542	0.250	0.542	0.125	0.562	0.188	0.572	0.125	HIGH				
5 (-6.0)	0.603	0.540	0.125	0.553	0.125	0.553	0.063	0.573	0.125	HIGH				
6 (-8.0)	0.615	0.585	0.188	0.595	0.125	0.585	0.125	0.595	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)										10/ /			1051	

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE40 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				,	Water Qu	iality Data	3
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.600										\times	><	>>	\times
2 (0.0)	0.578	0.515	0.250	0.515	0.188	0.548	0.188	0.515	0.250	MOD	7.68	8.8	0.103	61.2
3 (-2.0)	0.587	0.497	0.500	0.524	0.375	0.524	0.375	0.497	0.188	HIGH	8.03	8.63	0.103	61.2
4 (-4.0)	0.626	0.563	0.125	0.563	0.250	0.563	0.125	0.546	0.625	HIGH	8.11	8.66	0.103	61.2
5 (-6.0)	0.623	0.560	0.125	0.583	0.500	0.583	0.375	0.593	0.188	HIGH	8.13	8.65	0.103	61.2
6 (-8.0)	0.606	0.543	0.125	0.566	0.250	0.586	0.063	0.566	0.125	HIGH	8.13	8.66	0.103	61.2
7 (-10.0)	0.635	0.605	0.250	0.615	0.125	0.585	0.250	0.595	0.188	HIGH	8.14	8.67	0.103	61.2
8 (-15.0)	0.581	0.561	0.250	0.566	0.375	0.561	0.375	0.556	0.375	HIGH	8.14	8.67	0.103	61.2
9 (-20.0)	0.626	0.596	0.125	0.616	0.250	0.611	0.250	0.606	0.250	HIGH	8.14	8.64	0.102	61.2
10 (29.5)	0.623	0.583	0.375	0.603	0.250	0.573	0.250	0.583	0.125	MOD	Botte	om was me	asured at 24	feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 46 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 5.2 mg/L

Alkalinity: 48 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Collection Date: Corrosion 8/23/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Ste	eel Corr	osion Da	ata				,	Water Qu	uality Dat	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.596										\times	><	>>	> <
2 (0.0)	0.524	0.399	0.500	0.384	0.500	0.424	0.063	0.424	0.250	HIGH	Data	a is located	on the DE5	o file
3 (-2.0)	0.606	0.476	0.250	0.486	0.500	0.543	0.063	0.543	0.125	HIGH				
4 (-4.0)	0.589	0.499	0.125	0.499	0.063	0.469	0.063	0.489	0.063	HIGH				
5 (-6.0)	0.613	0.483	1.000	0.550	0.125	0.513	0.500	0.513	0.500	HIGH				
6 (-8.0)	0.623	0.523	0.250	0.493	0.125	0.513	0.125	0.523	0.063	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: Duluth Entry

(CR): M = Moderate (50 -75% Pitted) Data Column ID: DE50 P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)**Data Collection Date:** Corrosion 8/23/06 Water Quality 9/21/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				,	Water Qu	ality Data	3
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.609										X	><	><	\times
2 (0.0)	0.593	0.468	0.250	0.503	0.500	0.473	0.250	0.533	0.125	Mod	7.90	8.63	0.105	61.3
3 (-2.0)	0.563	0.463	0.500	0.438	0.188	0.413	0.500	0.423	0.250	High	8.07	8.82	0.105	61.3
4 (-4.0)	0.608	0.433	1.000	0.448	0.750	0.488	0.250	0.508	0.750	High	8.19	9.05	0.105	61.3
5 (-6.0)	0.560	0.395	0.500	0.497	0.250	0.460	0.250	0.450	0.188	High	8.15	9.10	0.104	61.3
6 (-8.0)	0.618	0.555	0.063	0.518	0.500	0.538	0.500	0.513	0.625	High	8.17	9.20	0.105	61.4
7 (-10.0)	0.626	0.546	0.500	0.556	0.125	0.536	0.125	0.563	0.125	High	8.17	9.26	0.105	61.4
8 (-15.0)	0.616	0.491	0.250	0.516	0.063	0.426	0.063	0.516	0.063	High	8.17	9.30	0.106	61.3
9 (-20.0)	0.617	0.554	0.063	0.554	0.125	0.527	0.125	0.517	0.125	High	8.15	8.93	0.105	61.3
											Botto	om was mea	sured at 23	3 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. **Chloride Ions:**

Total Suspended Solids: Notes: 1. See Plates 1 through 9 for locations of data. <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 47 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: < 0.20 mg/L

> Sulfate lons: 5.5 mg/L

> > Alkalinity: 48 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE6i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/23/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.611										\times	><	\times	><
2 (0.0)	0.614	0.551	0.063	0.544	0.250	0.551	0.063	0.564	0.125	MOD	Dat	a is located	on the DE6	o file
3 (-2.0)	0.623	0.498	0.500	0.503	0.063	0.498	0.500	0.473	0.500	HIGH				
4 (-4.0)	0.617	0.554	0.250	0.527	0.063	0.477	0.125	0.497	0.188	HIGH				
5 (-6.0)	0.609	0.449	0.125	0.549	0.063	0.519	0.125	0.546	0.250	HIGH				
6 (-8.0)	0.615	0.552	0.063	0.505	0.250	0.525	0.250	0.552	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: DE 60 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/23/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	iality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.611										\times	$>\!\!<$	\times	$>\!\!<$
2 (0.0)	0.609	0.546	0.063	0.484	0.250	0.519	0.063	0.546	0.125	LOW	8.11	8.74	0.104	61.1
3 (-2.0)	0.612	0.487	0.500	0.462	0.500	0.462	0.250	0.487	0.313	MOD	8.20	8.94	0.103	61.1
4 (-4.0)	0.612	0.462	0.750	0.462	0.875	0.482	0.125	0.462	0.250	HIGH	8.15	8.99	0.103	61.1
5 (-6.0)	0.614	0.489	0.125	0.494	0.250	0.514	0.063	0.551	0.125	HIGH	8.12	9.04	0.103	61.1
6 (-8.0)	0.616	0.536	0.063	0.506	0.125	0.526	0.250	0.553	0.500	HIGH	8.12	9.16	0.103	61.1
7 (-10.0)	0.533	0.453	0.063	0.423	0.063	0.413	0.250	0.403	0.375	HIGH	8.13	9.22	0.102	61.1
8 (-15.0)	0.618	0.555	0.250	0.518	0.125	0.518	0.125	0.528	0.250	HIGH	8.15	9.32	0.101	61.1
9 (-20.0)	0.613	0.583	0.063	0.523	0.063	0.513	0.250	0.503	0.125	HIGH	8.14	9.32	0.102	61.1
10 (25)	0.601	0.538	0.250	0.538	0.063	0.511	0.125	0.526	0.063	HIGH			asured at 23	4

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 48 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 5 mg/L

Alkalinity: 47 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Collection Date: Corrosion 9/1/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	uality Dat	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.063										\mathbb{X}	><	> <	$>\!\!<$
2 (0.0)	0.606	0.586	0.125	0.556	0.250	0.556	0.250	0.556	0.125	LOW	Dat	a is located	on the DE7	o file
3 (-2.0)	0.603	0.543	0.250	0.523	0.250	0.523	0.250	0.533	0.188	HIGH				
4 (-4.0)	0.625	0.585	0.250	0.605	0.250	0.575	0.188	0.575	0.188	HIGH				
5 (-6.0)	0.573	0.523	0.250	0.523	0.125	0.553	0.125	0.523	0.250	HIGH				
6 (-8.0)	0.612	0.572	0.250	0.602	0.250	0.592	0.375	0.582	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron:

Sulfate lons:

Chloride Ions:

Alkalinity:

Hardness:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE70 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 9/1/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				٧	Vater Qu	ality Da	ta
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.591										\times	\times	\times	\times
2 (0.0)	0.607	0.547	0.250	0.547	0.125	0.547	0.125	0.557	0.125	MOD	8.01	8.61	0.104	61.2
3 (-2.0)	0.607	0.507	0.500	0.497	0.375	0.497	0.375	0.527	0.625	HIGH	8.17	8.80	0.103	61.2
4 (-4.0)	0.594	0.524	0.125	0.504	0.188	0.544	0.375	0.531	0.250	HIGH	8.18	8.92	0.103	61.2
5 (-6.0)	0.611	0.541	0.188	0.511	0.375	0.548	0.125	0.561	0.250	HIGH	8.17	9.01	0.103	61.2
6 (-8.0)	0.567	0.517	0.188	0.547	0.250	0.537	0.188	0.547	0.125	HIGH	8.17	9.05	0.103	61.2
7 (-10.0)	0.617	0.587	0.250	0.577	0.125	0.577	0.250	0.577	0.125	HIGH	8.17	8.93	0.103	61.2
8 (-15.0)	0.627	0.577	0.250	0.587	0.375	0.587	0.375	0.617	0.250	HIGH	8.17	8.96	0.104	61.1
9 (-20.0)	0.622	0.582	0.250	0.602	0.188	0.562	0.250	0.592	0.188	HIGH	8.16	8.95	0.103	61.1
10 (-30.5)	0.619	0.559	0.375	0.579	0.375	0.494	0.625	0.569	0.500	LOW		m was mea		

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 46 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 4.7 mg/L

Alkalinity: 47 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Collection Date: Corrosion 9/1/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	ì
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.596										\mathbb{X}	><	><	\times
2 (0.0)	0.579	0.479	0.250	0.529	0.250	0.499	0.250	0.516	0.250	MOD	Dat	a is located	on the DE8	o file
3 (-2.0)	0.597	0.534	0.500	0.534	0.250	0.547	0.375	0.534	0.375	HIGH				
4 (-4.0)	0.623	0.583	0.375	0.573	0.250	0.583	0.250	0.573	0.250	HIGH				
5 (-6.0)	0.628	0.618	0.125	0.618	0.250	0.598	0.375	0.588	0.250	HIGH				
6 (-8.0)	0.609	0.569	0.125	0.589	0.375	0.589	0.250	0.569	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)										10.1				

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE80 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/23/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				,	Water Qu	ality Data	ì	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp	
1 (+2.0)	0.618										\times	>>	>>	\times	
2 (0.0)	0.615	0.515	0.500	0.495	0.500	0.505	0.250	0.490	0.250	HIGH	8.05	8.54	0.103	61.1	
3 (-2.0)	0.609	0.484	0.500	0.459	0.500	0.449	0.375	0.439	0.250	HIGH	8.22	8.78	0.104	61.1	
4 (-4.0)	0.605	0.425	1.000	0.455	0.750	0.455	0.500	0.455	0.500	HIGH	8.19	8.88	0.103	61.1	
5 (-6.0)	0.599	0.449	0.500	0.449	1.000	0.469	0.625	0.449	0.500	HIGH	8.18	8.92	0.103	61.1	
6 (-8.0)	0.603	0.428	0.500	0.453	1.000	0.453	0.250	0.503	0.125	HIGH	8.17	8.99	0.103	61.1	
7 (-10.0)	0.598	0.448	0.313	0.468	0.250	0.498	0.125	0.448	0.250	HIGH	8.17	9.02	0.103	61.1	
8 (-15.0)	0.610	0.470	0.250	0.470	0.125	0.510	0.250	0.440	0.063	HIGH	8.18	9.12	0.103	61.1	
9 (-20.0)	0.605	0.525	0.063	0.535	0.063	0.525	0.125	0.505	0.063	MOD	8.18 9.56 0.100 61.1				
10 (-29.5)	0.628	0.598	0.250	0.608	0.125	0.588	0.125	0.578	0.188	LOW	Botte	om was mea	sured at 26	feet	

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 45 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 4.4 mg/L

Alkalinity: 47 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 9i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/22/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	3
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.618										\mathbb{X}	><	> <	\times
2 (0.0)	0.611	0.581	0.125	0.591	0.125	0.571	0.125	0.561	0.188	MOD	Dat	a is located	on the DE9	o file
3 (-2.0)	0.611	0.548	0.250	0.571	0.188	0.551	0.188	0.548	0.188	HIGH				
4 (-4.0)	0.617	0.554	0.250	0.567	0.188	0.567	0.188	0.567	0.188	HIGH				
5 (-6.0)	0.616	0.566	0.125	0.566	0.250	0.553	0.250	0.566	0.188	HIGH				
6 (-8.0)	0.623	0.583	0.125	0.593	0.125	0.593	0.188	0.583	0.125	HIGH				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)										107.4				

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: Duluth Entry

(CR): M = Moderate (50 -75% Pitted) Data Column ID: DE90 P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)**Data Collection Date:** Corrosion 8/22/06 Water Quality 9/21/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion D	ata					Water Qเ	ality Data	ì
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.616										\times	><	\times	> <
2 (0.0)	0.615	0.585	0.125	0.565	0.063	0.595	0.125	0.595	0.125	MOD	8.02	8.97	0.095	60.8
3 (-2.0)	0.598	0.548	0.188	0.498	0.250	0.538	0.125	0.558	0.188	High	8.20	9.00	0.096	60.8
4 (-4.0)	0.614	0.534	0.188	0.564	0.188	0.564	0.188	0.564	0.188	High	8.22	8.99	0.096	60.8
5 (-6.0)	0.612	0.549	0.250	0.549	0.125	0.549	0.125	0.542	0.250	High	8.23	8.99	0.096	60.8
6 (-8.0)	0.603	0.540	0.250	0.553	0.188	0.563	0.188	0.573	0.125	High	8.23	8.98	0.096	60.7
7 (-10.0)	0.626	0.586	0.125	0.596	0.125	0.586	0.188	0.596	0.125	High	8.25	8.95	0.096	60.8
8 (-15.0)											8.25	8.95	0.095	60.8
9 (-20.0)											Botto	m was mea	sured at 15.	2 feet
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. **Chloride Ions:**

Notes: 1. See Plates 1 through 9 for locations of data. **Total Suspended Solids:** <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 46 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: < 0.20 mg/L

> Sulfate lons: 4.1 mg/L

> > Alkalinity: 46 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE10i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/22/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	iality Data	ì
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.618										\times	>>	>>	\times
2 (0.0)	0.613	0.550	0.063	0.513	0.250	0.550	0.063	0.550	0.063	LOW	Data	is located	on the DE10	o file
3 (-2.0)	0.598	0.473	0.250	0.423	0.500	0.473	0.500	0.403	0.500	HIGH				
4 (-4.0)	0.605	0.430	0.500	0.470	0.250	0.455	0.500	0.480	0.500	HIGH				
5 (-6.0)	0.617	0.554	0.250	0.554	0.125	0.517	0.063	0.492	0.750	MOD				
6 (-8.0)	0.609	0.489	0.250	0.546	0.125	0.546	0.250	0.509	0.063	MOD				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)		1 0									<u> </u>		4 O Dalaw	

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

Chloride lons:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Total Iron:

Sulfate lons:

Alkalinity:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE100 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/22/06 Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	ality Data	à
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.615										\times	>>	>>	> <
2 (0.0)	0.618	0.493	0.500	0.468	0.500	0.493	0.750	0.468	0.250	HIGH	7.98	8.99	0.103	61.5
3 (-2.0)	0.617	0.492	0.500	0.517	0.500	0.507	0.750	0.492	0.250	HIGH	8.13	8.85	0.103	61.3
4 (-4.0)	0.613	0.488	1.250	0.493	0.500	0.488	0.750	0.483	0.875	HIGH	8.20	8.92	0.102	61.1
5 (-6.0)	0.614	0.514	0.250	0.494	0.063	0.426	0.750	0.489	0.500	HIGH	8.20	8.92	0.103	61.1
6 (-8.0)	0.621	0.496	0.500	0.521	0.250	0.521	0.125	0.521	0.500	HIGH	8.19	8.96	0.102	61.1
7 (-10.0)	0.605	0.542	0.063	0.542	0.250	0.525	0.063	0.542	0.250	LOW	8.20	8.78	0.101	61.1
8 (-15.0)	0.611	0.521	0.063	0.521	0.125	0.521	0.500	0.561	0.250	LOW	8.19	8.75	0.098	61.1
9 (-20.0)	0.613	0.513	0.250	0.543	0.063	0.533	0.250	0.553	0.063	MOD	8.20	8.76	0.099	61.1
10 (-30.5)	0.619	0.494	0.500	0.444	0.050	0.494	0.500	0.494	0.188	MOD	Botto	m was mea	sured at 28.	7 feet
	* Indicate									Water	Sample	Data at -	4.0 Belov	v LWD

Water quality data at this entry to be taken at the mud line or bottom.

or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 45 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 4.3 mg/L

Alkalinity: 45 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Erie Pier Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: EP10 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/23/06 Water Quality 9/24/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				V	Vater Qua	ality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.375										\times	> <	>>	$>\!\!<$
2 (0.0)	0.382	0.352	0.125	0.342	0.250	0.352	0.063	0.292	0.250	LOW	8.08	8.44	0.243	58.6
3 (-2.0)	0.371	0.308	0.250	0.246	0.250	0.271	0.188	0.281	0.188	HIGH	8.09	8.43	0.243	58.5
4 (-4.0)	0.369	0.319	0.188	0.329	0.188	0.339	0.125	0.319	0.250	HIGH	8.09	8.45	0.242	58.0
5 (-6.0)	0.366	0.326	0.125	0.316	0.188	0.336	0.125	0.326	0.125	HIGH	8.08	8.42	0.242	57.4
6 (-8.0)	0.371	0.321	0.188	0.331	0.188	0.308	0.125	0.331	0.125	HIGH	8.08	8.40	0.242	57.2
7 (-10.0)	0.378	0.338	0.125	0.348	0.125	0.358	0.188	0.253	1.000	HIGH	8.08	8.33	0.243	57.0
8 (-15.0)	0.374	0.334	0.125	0.324	0.125	0.311	0.063	0.344	0.250	HIGH	8.01	7.75	0.242	56.8
9 (-20.0)														
10 (*)											Botto	m was mea	sured at 15	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

17

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

Chloride Ions:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 88 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron: 0.63 mg/L Sulfate Ions: 22 mg/L

Alkalinity: 89 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: EP20 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/23/06 Water Quality 9/24/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				,	Water Qu	ality Data	3
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.379										\times	> <	> <	\times
2 (0.0)	0.377	0.252	0.500	0.314	0.375	0.252	0.500	0.314	0.250	HIGH	8.25	9.03	0.239	59.1
3 (-2.0)	0.371	0.281	0.188	0.291	0.188	0.271	0.125	0.291	0.188	HIGH	8.25	9.23	0.239	59.1
4 (-4.0)	0.369	0.306	0.188	0.329	0.125	0.279	0.188	0.319	0.125	HIGH	8.17	8.97	0.238	58.5
5 (-6.0)	0.358	0.295	0.125	0.318	0.125	0.298	0.063	0.318	0.125	HIGH	8.13	8.91	0.24	57.9
6 (-8.0)	0.371	0.327	0.188	0.308	0.125	0.271	0.250	0.308	0.188	HIGH	8.06	8.77	0.24	56.7
7 (-10.0)	0.369	0.306	0.250	0.306	0.125	0.329	0.125	0.329	0.125	HIGH	8.05	8.68	0.24	56.7
8 (-15.0)	0.372	0.332	0.125	0.332	0.125	0.282	0.500	0.309	0.250	HIGH				
9 (-20.0)														
10 (*)										10/-1		m was mea		

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 16 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 100 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.71 mg/L

Sulfate lons: 21 mg/L

Alkalinity: 89 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: SE10 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Plate

				Sto	eel Corr	osion D	ata				V	Nater Qua	ality Dat	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	\times	\times
2 (0.0)	0.899	0.774	0.500	0.711	0.500	0.711	0.500	0.743	0.375	HIGH	8.20	8.97	0.111	61.1
3 (-2.0)	0.982	0.763	0.500	0.794	0.500	0.732	0.625	0.669	0.500	HIGH	8.27	8.96	0.100	61.2
4 (-4.0)	1.460	1.147	0.625	1.147	0.500	1.147	0.500	1.210	0.500	HIGH	8.24	8.97	0.105	61.2
5 (-6.0)	1.440	1.190	0.750	1.127	0.750	1.221	0.750	1.252	0.750	HIGH	8.22	8.88	0.115	61.1
6 (-8.0)	1.465	1.152	0.750	1.215	0.625	1.152	0.625	1.065	0.750	HIGH	8.21	8.95	0.103	61.2
7 (-10.0)											8.20	8.8	0.110	61.0
8 (-15.0)											8.11	8.49	0.162	60.6
9 (-20.0)											8.10	8.36	0.171	60.4
10 (*)										387.4		m was mea		3 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 48 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 4.8 mg/L

Alkalinity: 47 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE20 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Plate

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	3
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	> <	\times
2 (0.0)	0.846	0.690	0.375	0.690	0.625	0.721	0.625	0.658	0.500	HIGH	8.21	8.78	0.114	61.5
3 (-2.0)	1.060	0.810	0.500	0.872	0.375	0.810	0.625	0.810	0.500	HIGH	8.13	8.77	0.116	61.5
4 (-4.0)	1.450	1.200	0.625	1.075	0.625	1.137	0.625	1.137	0.750	HIGH	8.15	8.78	0.118	61.4
5 (-6.0)	1.340	1.090	0.500	0.940	0.625	0.902	0.500	1.027	0.500	HIGH	8.13	8.75	0.123	61.3
6 (-8.0)	1.350	0.950	0.500	0.975	0.625	1.010	0.625	0.930	0.375	HIGH	8.13	8.79	0.120	61.4
7 (-10.0)											8.12	8.77	0.132	61.2
8 (-15.0)											8.11	8.72	0.131	61.1
9 (-20.0)											8.10	8.71	0.134	61.1
10 (*)												om was mea		feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 53 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.21 mg/L

Sulfate lons: 8.9 mg/L

Alkalinity: 53 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating** H = High (75 -100% Pitted)

> (CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

T = Overall Plate Thickness

Data Collection Date: Water Quality 9/24/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: SE3w

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	><	> <
2 (0.0)			No	data colle	ected - bre	akwall is n	nade of wo	od			8.17	9.42	0.121	59.0
3 (-2.0)											8.11	9.04	0.125	58.9
4 (-4.0)											8.12	9.00	0.126	58.8
5 (-6.0)											8.11	9.03	0.125	58.8
6 (-8.0)											8.11	9.05	0.127	58.8
7 (-10.0)											8.12	9.07	0.125	58.9
8 (-15.0)											8.08	9.02	0.138	58.4
9 (-20.0)											8.06	8.93	0.140	58.3
10 (*)											Bot	tom was me	asured at 20	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

Total Iron:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 61 mg/L 0.42

3. All elevations are referenced from Low Water Datum = IGLD 1955

mg/L Sulfate lons: 6.8 mg/L

Alkalinity: 52 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: SE4w P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/21/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA **Surface Type NA**

				St	eel Corr	osion D	ata				'	<i>N</i> ater Qu	ality Data	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	><	\times
2 (0.0)			No	data colle	ected - bre	akwall is n	nade of wo	ood	_		8.26	8.90	0.108	61.3
3 (-2.0)											8.26	8.83	0.108	61.3
4 (-4.0)											8.18	8.84	0.107	61.3
5 (-6.0)											8.17	8.83	0.107	61.3
6 (-8.0)											8.17	8.89	0.107	61.3
7 (-10.0)											8.17	8.89	0.107	61.3
8 (-15.0)											8.17	8.90	0.107	61.3
9 (-20.0)											8.13	8.83	0.107	61.3
10 (*)										107.1	•	n was mea		.5 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. **Chloride lons:**

Notes: 1. See Plates 1 through 9 for locations of data. **Total Suspended Solids:** <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 47 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: < 0.20 mg/L

> Sulfate lons: mg/L 5.6

> > Alkalinity: 49 mg/L

Data Entry Sheet

US Army Corps of Engineers

(CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: SE5w

				Sto	eel Corr	osion D	ata				1	Water Qu	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	><	\times
2 (0.0)			No	data colle	ected - bre	akwall is n	nade of wo	ood			8.21	8.86	0.109	61.3
3 (-2.0)											8.19	8.90	0.109	61.3
4 (-4.0)											8.18	8.87	0.108	61.2
5 (-6.0)											8.15	8.90	0.108	61.2
6 (-8.0)											8.15	8.90	0.108	61.2
7 (-10.0)											8.15	8.87	0.108	61.2
8 (-15.0)											8.14	8.89	0.108	61.2
9 (-20.0)											8.07	8.76	0.111	61.1
10 (*)											Bottor	m was mea	sured at 20	.5 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

48

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955

Chloride lons: <10 mg/L

Total Suspended Solids: <10 mg/L

Hardness:

Total Iron: <0.20 mg/L

Sulfate lons: 6 mg/L

Alkalinity: 49 mg/L

Data Entry Sheet

US Army Corps of Engineers

(CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: SE6w

				St	eel Corr	osion Da	ata					Water Qu	ality Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\mathbb{X}	\times	><	><
2 (0.0)		_	No	data colle	ected - bre	akwall is n	nade of wo	ood			7.83	8.97	0.124	60.8
3 (-2.0)											8.16	8.96	0.125	60.8
4 (-4.0)											8.11	8.88	0.126	60.6
5 (-6.0)											8.08	8.80	0.127	60.6
6 (-8.0)											8.08	8.75	0.128	60.5
7 (-10.0)											8.07	8.69	0.127	60.6
8 (-15.0)											8.06	8.69	0.129	60.5
9 (-20.0)											Bo	ttom was mea	sured at 18 f	feet
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 53 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 9.5 mg/L

Alkalinity: 53 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE7i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion D	ata					Water C	uality Dat	а
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.421										\times	><	><	> <
2 (0.0)	0.420	0.357	0.250	0.357	0.250	0.357	0.188	0.357	0.250	HIGH		ata located	on the SE7	file
3 (-2.0)	0.413	0.350	0.188	0.350	0.250	0.350	0.500	0.350	0.250	HIGH				
4 (-4.0)	0.418	0.387	0.375	0.387	0.250	0.355	0.250	0.355	0.188	HIGH				
5 (-6.0)	0.413	0.382	0.375	0.382	0.188	0.382	0.125	0.382	0.188	MOD				
6 (-8.0)	0.421	0.358	0.250	0.411	0.188	0.401	0.250	0.411	0.375	MOD				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: SE70 P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Water Qua	ality Data	ì
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.417										\times	\times	> <	$>\!\!<$
2 (0.0)	0.416	0.385	0.125	0.396	0.063	0.353	0.125	0.385	0.188	HIGH	8.05	8.56	0.156	60.3
3 (-2.0)	0.403	0.340	0.125	0.340	0.188	0.340	0.188	0.340	0.125	HIGH	8.15	8.60	0.155	60.3
4 (-4.0)	0.428	0.334	0.250	0.365	0.188	0.365	0.188	0.365	0.375	HIGH	8.14	8.56	0.155	60.3
5 (-6.0)	0.422	0.359	0.188	0.359	0.375	0.359	0.250	0.359	0.375	HIGH	8.13	8.58	0.154	60.2
6 (-8.0)	0.416	0.385	0.250	0.353	0.250	0.353	0.250	0.385	0.188	HIGH	8.12	8.52	0.154	60.3
7 (-10.0)	0.415	0.405	0.500	0.395	0.250	0.405	0.125	0.395	0.375	LOW	8.12	8.55	0.153	60.3
8 (-15.0)											Bott	mom measu	red at 12.5	feet
9 (-20.0)														
10 (*)										107.4				114/5

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. **Chloride Ions:**

Total Suspended Solids: Notes: 1. See Plates 1 through 9 for locations of data. mg/L <10

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 59 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: 0.22 mg/L

> Sulfate lons: 13 mg/L

> > Alkalinity: 60 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: SE8i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata				,	Water Qเ	iality Dat	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.409										\times	><	>>	> <
2 (0.0)	0.417	0.387	0.250	0.387	0.188	0.377	0.375	0.387	0.250	HIGH	Da	ta located o	n the SE8c	file
3 (-2.0)	0.414	0.351	0.250	0.351	0.250	0.374	0.125	0.351	0.375	HIGH				
4 (-4.0)	0.421	0.381	0.125	0.401	0.250	0.401	0.125	0.381	0.188	HIGH				
5 (-6.0)	0.414	0.394	0.125	0.404	0.188	0.404	0.125	0.384	0.188	MOD				
6 (-8.0)	0.407	0.387	0.750	0.387	0.250	0.387	0.750	0.397	0.250	LOW				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: Total Iron:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: SE80 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				7	Water Qu	ality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.413										\times	><	><	\times
2 (0.0)	0.410	0.379	0.125	0.379	0.188	0.379	0.125	0.347	0.188	LOW	8.26	8.90	0.108	61.3
3 (-2.0)	0.417	0.386	0.125	0.354	0.063	0.354	0.188	0.354	0.125	MOD	8.26	8.83	0.108	61.3
4 (-4.0)	0.409	0.346	0.250	0.346	0.250	0.346	0.250	0.346	0.188	HIGH	8.18	8.84	0.107	61.3
5 (-6.0)	0.409	0.346	0.250	0.346	0.188	0.346	0.375	0.346	0.250	HIGH	8.17	8.83	0.107	61.3
6 (-8.0)	0.418	0.398	0.250	0.398	0.125	0.398	0.250	0.398	0.250	LOW	8.17	8.89	0.107	61.3
7 (-10.0)	0.414	0.394	0.125	0.394	0.063	0.384	0.063	0.394	0.125	LOW	8.17	8.89	0.107	61.3
8 (-15.0)	0.411	0.391	0.375	0.391	0.375	0.381	0.500	0.371	0.188	LOW	8.17	8.90	0.107	61.3
9 (-20.0)	0.419	0.409	0.125	0.409	0.125	0.399	0.125	0.409	0.063	LOW	8.13	8.83	0.107	61.3
10 (*)												m was mea		

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 47 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: <0.20 mg/L

Sulfate lons: 5.6 mg/L

Alkalinity: 49 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: SE80 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				1	Water Qu	ality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.413										\times	> <	>>	\times
2 (0.0)	0.410	0.379	0.125	0.379	0.188	0.379	0.125	0.347	0.188	LOW	8.06	8.47	0.167	60.2
3 (-2.0)	0.417	0.386	0.125	0.354	0.063	0.354	0.188	0.354	0.125	MOD	8.12	8.44	0.167	60.3
4 (-4.0)	0.409	0.346	0.250	0.346	0.250	0.346	0.250	0.346	0.188	HIGH	8.08	8.44	0.167	60.3
5 (-6.0)	0.409	0.346	0.250	0.346	0.188	0.346	0.375	0.346	0.250	HIGH	8.07	8.41	0.167	60.3
6 (-8.0)	0.418	0.398	0.250	0.398	0.125	0.398	0.250	0.398	0.250	LOW	8.07	8.37	0.168	60.3
7 (-10.0)	0.414	0.394	0.125	0.394	0.063	0.384	0.063	0.394	0.125	LOW	8.06	8.36	0.167	60.3
8 (-15.0)	0.411	0.391	0.375	0.391	0.375	0.381	0.500	0.371	0.188	LOW	8.07	8.25	0.167	60.3
9 (-20.0)	0.419	0.409	0.125	0.409	0.125	0.399	0.125	0.409	0.063	LOW	8.06	7.91	0.167	60.3
10 (*)											Botto	m was mea	sured at 20	.6 feet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: 10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 62 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: 0.29 mg/L

Sulfate lons: 15 mg/L

Alkalinity: 63 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE90 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/17/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Ste	eel Corro	osion Da	ata				,	Water Qเ	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.371										\times	> <	> <	$>\!\!<$
2 (0.0)	0.367	0.357	0.063	0.360	0.063	0.360	0.125	0.360	0.125	LOW	8.13	8.29	0.167	60.4
3 (-2.0)	0.369	0.359	0.063	0.350	0.063	0.350	0.125	0.360	0.063	MOD	8.10	8.29	0.167	60.4
4 (-4.0)	0.377	0.357	0.063	0.370	0.063	0.370	0.063	0.360	0.063	HIGH	8.11	8.42	0.166	60.4
5 (-6.0)	0.386	0.346	0.063	0.370	0.063	0.370	0.063	0.380	0.063	HIGH	8.09	8.41	0.167	60.4
6 (-8.0)	0.376	0.366	0.063	0.350	0.063	0.360	0.063	0.360	0.063	HIGH	8.07	8.72	0.167	60.4
7 (-10.0)	0.370	0.350	0.063	0.350	0.063	0.360	0.125	0.350	0.063	MOD	8.08	8.43	0.165	60.4
8 (-15.0)	0.369	0.339	0.063	0.350	0.031	0.350	0.063	0.360	0.031	LOW	8.06	8.36	0.166	60.4
9 (-20.0)	0.370	0.350	0.063	0.360	0.063	0.360	0.063	0.360	0.063	LOW	8.04	8.31	0.169	60.3
10 (-25.0)	0.379	0.369	0.063	0.370	0.031	0.370	0.031	0.370	0.031	LOW	Во	ottom meas	ured at 28 f	eet

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 61 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron: 0.28 mg/L

Sulfate lons: 16 mg/L

Alkalinity: 62 mg/L

Data Entry Sheet

US Army Corps of Engineers

Data Column ID: SE10i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/18/06 Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Qu	ality Dat	а
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.378										X	><	><	$>\!\!<$
2 (0.0)	0.385	0.375	0.063	0.380	0.031	0.380	0.031	0.380	0.031	LOW	Data	a is located	on the SE10	o file
3 (-2.0)	0.372	0.357	0.063	0.352	0.063	0.357	0.063	0.357	0.031	LOW				
4 (-4.0)	0.386	0.367	0.063	0.366	0.094	0.376	0.063	0.366	0.094	LOW				
5 (-6.0)	0.376	0.366	0.063	0.366	0.063	0.366	0.063	0.366	0.063	MOD				
6 (-8.0)	0.375	0.370	0.063	0.365	0.063	0.370	0.063	0.370	0.063	LOW				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness **Structure Location:** Superior Entry

> (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)Data Collection Date: Corrosion 8/18/06 Water Quality 9/20/06 P1dia = Pit 1 diameter

Surface Type Outer Flange Square Size of Steel Data: 6 inches

Data Column ID: SE100

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	1
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.374										\times	>>	>>	> <
2 (0.0)	0.363	NR	NR	NR	NR	NR	NR	NR	NR	LOW	8.07	8.35	0.173	60.4
3 (-2.0)	0.372	0.362	0.063	0.367	0.063	0.357	0.063	0.357	0.063	LOW	8.07	8.41	0.170	60.3
4 (-4.0)	0.377	0.357	0.063	0.367	0.063	0.372	0.063	0.372	0.125	LOW	8.06	8.52	0.168	60.4
5 (-6.0)	0.363	0.353	0.094	0.353	0.063	0.353	0.063	0.353	0.063	LOW	8.06	8.54	0.171	60.3
6 (-8.0)	0.370	0.365	0.031	0.355	0.063	0.365	0.063	0.365	0.063	MOD	8.05	8.55	0.173	60.2
7 (-10.0)	0.371	0.366	0.063	0.366	0.063	0.361	0.063	0.366	0.063	MOD	8.04	8.56	0.174	60.2
8 (-15.0)	0.371	0.366	0.031	0.366	0.031	0.361	0.031	0.361	0.063	MOD	8.02	8.62	0.175	60.2
9(-18.0)	0.367	0.362	0.063	0.362	0.031	0.362	0.063	0.362	0.063	MOD	8.03	8.66	0.176	60.1
10 (*)											Botto	om was mea	sured at 21	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD 11

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids: Notes: 1. See Plates 1 through 9 for locations of data. <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 63 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.33 mg/L

> Sulfate lons: 16 mg/L

Chloride Ions:

Alkalinity: mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY1i (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Water Qı	uality Dat	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.381										\times	><	$>\!\!<$	> <
2 (0.0)	0.374	0.186	0.750	0.218	0.500	0.214	0.375	0.280	0.500	HIGH	Dat	a is located	on the VY1	o file
3 (-2.0)	0.343	0.280	0.250	0.218	0.250	0.243	0.250	0.280	0.250	MOD				
4 (-4.0)	0.378	0.268	0.250	0.355	0.250	0.293	0.188	0.324	0.188	MOD				
5 (-6.0)	0.390	0.296	0.375	0.327	0.250	0.327	0.375	0.296	0.125	HIGH				
6 (-8.0)	0.393	0.330	0.250	0.330	0.250	0.373	0.250	0.299	0.250	MOD				
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride lons:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Notes: 1. See Plates 1 through 9 for locations of data.

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: USACE Vessel Yard T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: VY10 P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)Data Collection Date: Corrosion 8/21/06 Water Quality 9/19/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				St	eel Corro	osion Da	ata				1	Water Qu	ality Data	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.376										\times	>>	>>	\times
2 (0.0)	0.389	0.274	0.375	0.274	0.250	0.243	0.500	0.243	0.250	HIGH	8.10	8.71	0.113	61.9
3 (-2.0)	0.384	0.300	0.188	0.331	0.240	0.331	0.375	0.300	0.250	HIGH	8.11	8.72	0.113	61.9
4 (-4.0)	0.387	0.262	0.250	0.262	0.250	0.324	0.250	0.357	0.188	MOD	8.11	8.76	0.113	61.9
5 (-6.0)	0.387	0.272	0.188	0.272	0.250	0.303	0.250	0.357	0.250	MOD	8.12	8.79	0.113	61.9
6 (-8.0)	0.381	0.320	0.250	0.351	0.250	0.320	0.125	0.374	0.250	MOD	8.13	8.89	0.113	61.9
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Botto	m was mea	sured at 8.3	3 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data. **Total Suspended Solids:** <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 48 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

> Sulfate lons: 6.4 mg/L

Chloride lons:

Alkalinity: mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: USACE Vessel Yard

(CR): M = Moderate (50 -75% Pitted) Data Column ID: VY2i P1r = Thickness of steel at pit 1

L = Low (0 - 50% Pitted)Data Collection Date: Corrosion 8/21/06 Water Quality 9/19/06 P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Water Q	uality Dat	a
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.381										\times	><	> <	$>\!\!<$
2 (0.0)	0.377	0.330	0.500	0.299	0.500	0.299	0.625	0.264	0.500	HIGH	Dat	a is located	on the VY2	2o file
3 (-2.0)	0.339	0.276	0.125	0.276	0.094	0.276	0.250	0.269	0.250	HIGH				
4 (-4.0)	0.385	0.352	0.250	0.295	0.125	0.352	0.125	0.321	0.250	MOD				
5 (-6.0)	0.381	0.342	0.375	0.396	0.125	0.336	0.188	0.326	0.250	MOD				
6 (-8.0)														
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)														114/5

* Indicate elevation where data is required one (1) foot below the mud line.

6 feet

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Chloride Ions:

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:**

Sulfate lons:

Total Suspended Solids:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY20 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Corrosion 8/21/06 Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

	_			St	eel Corr	osion D	ata					Water Qu	ality Dat	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)	0.384										\times	>><	>>	\times
2 (0.0)	0.381	0.293	0.500	0.355	0.750	0.355	0.500	0.293	0.500	HIGH	8.12	8.81	0.113	61.9
3 (-2.0)	0.379	0.307	0.375	0.338	0.375	0.369	0.250	0.338	0.250	HIGH	8.37	9.01	0.113	61.9
4 (-4.0)	0.379	0.356	0.250	0.294	0.375	0.339	0.250	0.356	0.188	MOD	8.32	9.10	0.113	61.9
5 (-6.0)														
6 (-8.0)														
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Botto	m was mea	asured at 4.	7 feet

* Indicate elevation where data is required one (1) foot below the mud line.

6 feet

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 49 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 6.5 mg/L

Alkalinity: 49 mg/L

Appendix C. Water Quality Field Data Non-Federal Structures

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: BONG BRIDGE CELL

> (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/20/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA **Surface Type NA**

Data Column ID: BONG BRIDGE CELL

				St	eel Corr	osion D	ata					Water Qu	ality Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	> <	\times
2 (0.0)				No corrosi	on data co	llected for	this report	•			8.03	7.95	0.233	60.4
3 (-2.0)											8.05	7.94	0.232	60.4
4 (-4.0)											8.10	7.93	0.234	60.6
5 (-6.0)											8.10	7.89	0.232	60.5
6 (-8.0)											8.10	7.89	0.230	60.1
7 (-10.0)											8.10	7.88	0.229	60.1
8 (-15.0)											8.11	7.91	0.229	60.1
9 (-20.0)											8.09	7.90	0.229	60.1
10 (*)											В	ottom meas	ured at 23 fe	et

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

93

mg/L

T = Overall Plate Thickness

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 15 mg/L Notes: 1. See Plates 1 through 9 for locations of data. **Total Suspended Solids:** <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.62 mg/L

> Sulfate lons: 20 mg/L

> > Alkalinity: mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: CARGILL Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CARGILL (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				Sto	eel Corr	osion D	ata				1	Water Qu	ality Data	ì
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	> <	\times
2 (0.0)				No corrosi	on data co	llected for	this report	•			7.95	8.26	0.136	62.8
3 (-2.0)											8.16	8.31	0.139	62.9
4 (-4.0)											8.14	8.32	0.139	62.9
5 (-6.0)											8.12	8.30	0.141	63.0
6 (-8.0)											8.13	8.30	0.141	63.0
7 (-10.0)											8.14	8.26	0.148	63.0
8 (-15.0)											8.15	8.24	0.156	63.0
9 (-20.0)											8.14	8.28	0.148	63.0
10 (*)														

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

<10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: <10 mg/L

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 53 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Notes: 1. See Plates 1 through 9 for locations of data.

Total Iron: <0.20 mg/L

Sulfate lons: 12 mg/L

Alkalinity: 53 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: CENEX HARVEST STATES 1 Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CHS1 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corro	sion Da	ata				1	Water Qu	ality Data	3
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	><	\times
2 (0.0)				No corros	ion data col	lected for	this report.				8.13	8.10	0.266	62.7
3 (-2.0)											8.19	8.09	0.265	62.7
4 (-4.0)											8.16	8.01	0.266	62.7
5 (-6.0)											8.14	8.05	0.266	62.7
6 (-8.0)											8.15	8.09	0.266	62.7
7 (-10.0)											8.12	8.04	0.265	62.6
8 (-15.0)											8.05	7.75	0.265	62.2
9 (-20.0)											7.98	7.45	0.264	62.1
10 (*)											Botto	m was mea	sured at 20.	5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: 21

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 82 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.29 mg/L

Sulfate lons: 32 mg/L

Alkalinity: 86 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: CENEX HARVEST STATES 2 Corrosion Rating H = High (75 -100% Pitted)

T = Overall Plate Thickness (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: CHS2

				St	teel Corro	sion Da	ıta					Water Qu	ality Data	
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	>>	$>\!\!<$
2 (0.0)				No corros	ion data col	ected for t	this report.				8.19	7.79	0.264	62.9
3 (-2.0)											8.10	7.74	0.265	62.8
4 (-4.0)											8.06	7.73	0.265	62.8
5 (-6.0)											8.05	7.76	0.265	62.8
6 (-8.0)											8.05	7.78	0.265	62.8
7 (-10.0)											8.05	7.81	0.265	62.8
8 (-15.0)											8.05	7.86	0.265	62.5
9 (-20.0)											7.99	7.49	0.264	62.1
10 (*)											Botto	m was meas	sured at 24.	5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955

Water Sample Data at -4.0 Below LWD

Chloride lons:

Total Suspended Solids: No analysis performed at this

Hardness: location

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: CENEX HARVEST STATES 3 Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: CHS3 P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corro	osion Da	ata					Water Q	uality Dat	ta
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	> <	> <
2 (0.0)				No corrosi	ion data col	lected for	this report				7.87	6.92	0.259	62.8
3 (-2.0)											7.88	6.90	0.258	62.9
4 (-4.0)											7.85	6.87	0.258	63.0
5 (-6.0)											7.84	6.85	0.258	62.9
6 (-8.0)											7.84	6.89	0.259	63.0
7 (-10.0)											7.83	6.89	0.259	63.0
8 (-15.0)											7.83	6.90	0.259	63.0
9 (-20.0)											7.83	6.92	0.258	62.9
10 (*)														

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955

Water Sample Data at -4.0 Below LWD

Chloride lons:

Total Suspended Solids: No analysis performed at this

Hardness: location

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: COMMUNITY SAILING DOCK

Corrosion Rating H = High (75 -100% Pitted)

T = Overall Plate Thickness

Data Column ID: COMMUNITY SAILING DOCK

(CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/20/06

L = Low (0 - 50% Pitted)

P1dia = Pit 1 diameter

Square Size of Steel Data: NA

Surface Type NA

				St	eel Corr	osion Da	ata					Water Qu	uality Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											> <	><	> <	>>
2 (0.0)				No corrosi	on data co	llected for	this report.				8.10	9.11	0.135	58.5
3 (-2.0)											8.24	9.02	0.135	58.5
4 (-4.0)														
5 (-6.0)														
6 (-8.0)														
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Bot	tom was mea	asured at 3.7	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD* <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids: <10

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 59 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron: 0.21 mg/L Sulfate lons: 11 mg/L

Alkalinity: 54 mg/L

* Water sample was collected at -3.0 ft below LWD

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: CUTLER MAGNER

(CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA **Surface Type NA**

Data Column ID: CUTLER MAGNER

				Sto	eel Corr	osion Da	ata				1	Water Qเ	ality Data	a
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	> <	>>	> <
2 (0.0)				No corrosi	on data co	llected for	this report	•			8.02	8.50	0.195	62.5
3 (-2.0)											8.20	8.13	0.195	62.7
4 (-4.0)											8.18	8.19	0.195	62.7
5 (-6.0)											8.14	8.05	0.195	62.8
6 (-8.0)											8.13	8.03	0.195	62.7
7 (-10.0)											8.12	8.02	0.195	62.7
8 (-15.0)											8.12	8.01	0.195	62.7
9 (-20.0)											8.11	8.00	0.196	62.7
10 (*)														

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

<10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions: 14 mg/L **Total Suspended Solids:**

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 68 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Notes: 1. See Plates 1 through 9 for locations of data.

Total Iron: 0.21 mg/L

Sulfate lons: 19 mg/L

Alkalinity: 66 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: DECC **Corrosion Rating** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DECC (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion D	ata				\	Nater Qu	ality Dat	а
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	> <	><	\times
2 (0.0)				No corrosi	on data co	llected for	this report	t.			8.32	8.79	0.100	62.3
3 (-2.0)											8.40	8.97	0.100	62.3
4 (-4.0)											8.36	9.09	0.100	62.3
5 (-6.0)											8.34	9.07	0.100	62.3
6 (-8.0)											8.33	9.15	0.100	62.3
7 (-10.0)											8.32	9.07	0.100	62.3
8 (-15.0)											8.32	9.07	0.100	62.3
9 (-20.0)											8.31	9.07	0.099	62.3
10 (*)											Bottor	n was mea	sured at 20	.4 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

<10

mg/L

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons:

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 46 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Notes: 1. See Plates 1 through 9 for locations of data.

Total Iron: <0.20 mg/L

Sulfate lons: 4.6 mg/L

Alkalinity: 46 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: DSPA BERTH 1 Corrosion Rating H = High (75 -100% Pitted)

T = Overall Plate Thickness

Data Column ID: DSPA BERTH 1 (CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/24/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion D	ata				V	Vater Qu	ality Da	ta
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											> <	\times	\times	\times
2 (0.0)				No corrosi	on data co	llected for	this report	t.			8.00	8.39	0.210	59.6
3 (-2.0)											7.97	8.44	0.210	59.6
4 (-4.0)											7.88	8.37	0.208	59.3
5 (-6.0)											7.86	8.36	0.208	59.3
6 (-8.0)											7.88	8.45	0.212	59.2
7 (-10.0)											7.80	8.41	0.233	59.1
8 (-15.0)											7.96	8.46	0.222	59.0
9 (-20.0)											8.02	8.48	0.225	58.9
10 (*)											Bottom	n was mea	sured at 29	9.5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 27 mg/L

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 61 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Notes: 1. See Plates 1 through 9 for locations of data.

Total Iron: <0.20 mg/L

Sulfate lons: 16 mg/L

Alkalinity: 60 mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: DSPA BERTH 4

> (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

T = Overall Plate Thickness

Data Collection Date: Water Quality 9/24/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: DSPA BERTH 4

Notes: 1. See Plates 1 through 9 for locations of data.

				Sto	eel Corr	osion Da	ata					Water Qu	ality Data	1
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	>>	> <
2 (0.0)		_		No corrosi	on data co	llected for	this report	•			8.06	8.46	0.199	59.0
3 (-2.0)											8.08	8.51	0.199	59.0
4 (-4.0)											8.05	8.51	0.199	58.9
5 (-6.0)											8.04	8.46	0.201	58.8
6 (-8.0)											8.03	8.42	0.200	58.8
7 (-10.0)											8.05	8.48	0.200	58.8
8 (-15.0)											8.01	8.38	0.202	58.8
9 (-20.0)											8.02	8.34	0.210	58.6
10 (*)											Botto	m was mea	sured at 30.	5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

<10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions: 14 mg/L **Total Suspended Solids:**

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 66 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.21 mg/L

> Sulfate lons: 21 mg/L

> > Alkalinity: 69 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: DSPA BERTH 6 Corrosion Rating H = High (75 -100% Pitted)

T = Overall Plate Thickness

Data Column ID: DSPA BERTH 6 (CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion Da	ata					Water Qu	ality Data	3
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	> <	> <
2 (0.0)				No corrosi	on data co	llected for	this report				8.00	7.58	0.268	63.5
3 (-2.0)											8.12	7.60	0.271	63.6
4 (-4.0)											8.11	7.61	0.274	63.6
5 (-6.0)											8.10	7.62	0.273	63.6
6 (-8.0)											8.10	7.61	0.274	63.6
7 (-10.0)											8.09	7.54	0.277	63.6
8 (-15.0)											8.08	7.46	0.294	63.4
9 (-20.0)											8.08	7.46	0.297	63.4
10 (*)														

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 21 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

Total Iron:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 81 mg/L

0.25

mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons: 35 mg/L

Alkalinity: 82 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: HALLETT 5 Corrosion Rating H = High (75 -100% Pitted)

T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted)

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/20/06 L = Low (0 - 50% Pitted)

P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: HALLETT 5

				Sto	eel Corr	osion Da	ata					Water Qu	uality Data	
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	><	$>\!\!<$
2 (0.0)		_		No corrosio	on data co	llected for	this report				7.89	7.23	0.268	62.4
3 (-2.0)											8.05	7.15	0.268	62.3
4 (-4.0)											8.02	7.05	0.269	62.2
5 (-6.0)											8.01	7.07	0.269	62.2
6 (-8.0)											8.00	7.14	0.268	62.0
7 (-10.0)											8.04	7.29	0.269	61.9
8 (-15.0)											8.04	7.35	0.268	61.9
9 (-20.0)											8.05	7.44	0.262	61.3
10 (*)											Botto	om was mea	asured at 28.5	5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

21

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

Chloride Ions:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 91 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron: 0.21 mg/L

Sulfate lons: 30 mg/L

Alkalinity: 87 mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: HALLETT 7

T = Overall Plate Thickness

(CR): M = Moderate (50 -75% Pitted) Data Column ID: HALLETT 7

P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/22/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion D	ata				V	Vater Qu	ality Da	ta
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	\times	> <
2 (0.0)				No corrosi	on data co	llected for	this report	t.			8.00	8.26	0.218	58.9
3 (-2.0)											8.01	8.26	0.218	58.9
4 (-4.0)											8.03	8.29	0.218	58.9
5 (-6.0)											8.03	8.39	0.218	58.9
6 (-8.0)											8.04	8.38	0.218	58.9
7 (-10.0)											8.04	8.08	0.218	58.9
8 (-15.0)											8.05	7.82	0.218	58.8
9 (-20.0)											8.03	7.66	0.219	58.8
10 (*)											Bottor	m was mea	asured at 2	20 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

12 mg/L **Total Suspended Solids:** <10 mg/L

Chloride Ions:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness: 94 mg/L

Total Iron: 0.65 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons: 14 mg/L

Alkalinity: 92 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: LAKEHEAD BOAT BASIN 1 Corrosion Rating H = High (75 - 100% Pitted) T = Overall Plate Thickness

Data Column ID: LAKEHEAD BOAT BASIN 1 (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/20/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				Sto	eel Corr	osion Da	ata				V	Vater Qu	ality Da	ta
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											> <	> <	\times	\times
2 (0.0)			1	No corrosi	on data co	llected for	this report				8.29	8.83	0.110	61.7
3 (-2.0)											8.26	8.80	0.110	61.5
4 (-4.0)											8.25	8.84	0.110	61.4
5 (-6.0)											8.24	8.90	0.110	61.4
6 (-8.0)											8.26	9.02	0.109	61.3
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Bottor	m was mea	asured at	10 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom. Chloride lons: <10 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 48 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** <0.20 mg/L

Sulfate lons: 6.4 mg/L

Alkalinity: 48 mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: LAKEHEAD BOAT BASIN 2

(CR): M = Moderate (50 -75% Pitted) Data Column ID: LAKEHEAD BOAT BASIN 2 P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion D	ata				V	Vater Qu	ality Da	ta
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	> <	\times
2 (0.0)			1	No corrosi	on data co	llected for	this report				8.17	8.77	0.115	61.4
3 (-2.0)											8.12	8.70	0.115	61.4
4 (-4.0)											8.08	8.77	0.115	61.4
5 (-6.0)														
6 (-8.0)														
7 (-10.0)														
8 (-15.0)														
9 (-20.0)														
10 (*)											Bottor	n was mea	asured at 4	.5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: No analysis performed at this

2. All steel measurements are in inches to the nearest thousandth of an inch.

location Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: MIDWEST ENERGY

> (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/24/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

Data Column ID: MIDWEST ENERGY

				St	eel Corr	osion Da	ata					Water Qu	iality Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	> <	> <	> <
2 (0.0)				No corrosi	on data co	llected for	this report				8.05	8.23	0.280	59.0
3 (-2.0)											8.01	8.21	0.280	58.9
4 (-4.0)											8.02	8.21	0.281	58.8
5 (-6.0)											8.03	8.17	0.281	58.9
6 (-8.0)											8.03	8.16	0.281	58.9
7 (-10.0)											8.03	8.14	0.281	58.9
8 (-15.0)											8.03	8.00	0.282	58.8
9 (-20.0)											8.02	8.05	0.283	58.7
10 (*)											Botto	m was mea	sured at 27.	5 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD 21

mg/L

T = Overall Plate Thickness

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids: Notes: 1. See Plates 1 through 9 for locations of data. <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 84 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron: 0.43 mg/L

Sulfate lons: 32 mg/L

Chloride Ions:

Alkalinity: 93 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: OLIVER BRIDGE Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: OLIVER BRIDGE (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				St	eel Corr	osion D	ata				1	Water Qu	ality Data	3
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	> <	>>	\times
2 (0.0)				No corrosi	on data co	llected for	this report	t.		_	8.44	9.26	0.236	60.7
3 (-2.0)											8.45	9.28	0.237	60.6
4 (-4.0)											8.43	9.25	0.237	60.3
5 (-6.0)											8.43	9.26	0.237	60.3
6 (-8.0)											8.40	9.21	0.237	60.1
7 (-10.0)											8.33	8.98	0.237	59.5
8 (-15.0)											8.28	8.78	0.237	59.3
9 (-20.0)											8.26	8.79	0.237	59.2
10 (*)											Botto	om was me	asured at 21	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 11 mg/L

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 110 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron: 0.23 mg/L

Sulfate lons: 14 mg/L

Alkalinity: 110 mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) Structure Location: SPIRIT LAKE MARINA

> (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

T = Overall Plate Thickness

Data Collection Date: Water Quality 9/22/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA **Surface Type NA**

Data Column ID: SPIRIT LAKE MARINA

				St	eel Corr	osion D	ata				V	Vater Qu	ality Da	ta
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	\times	\times	\times
2 (0.0)				No corrosi	on data co	llected for	this report				8.11	8.15	0.219	58.6
3 (-2.0)											8.11	8.31	0.219	58.6
4 (-4.0)											8.12	8.32	0.219	58.6
5 (-6.0)											8.12	8.33	0.218	58.6
6 (-8.0)											8.13	8.34	0.218	58.6
7 (-10.0)											8.12	8.30	0.218	58.6
8 (-15.0)														
9 (-20.0)														
10 (*)											Bottor	m was mea	asured at 1	13 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

11

<10

mg/L

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: Notes: 1. See Plates 1 through 9 for locations of data.

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 100 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.36 mg/L

> Sulfate lons: 11 mg/L

Total Suspended Solids:

Alkalinity: 99 mg/L

Data Entry Sheet

US Army Corps of Engineers

Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness Structure Location: TWO HARBORS

(CR): M = Moderate (50 -75% Pitted) Data Column ID: TWO HARBORS P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/24/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

				Sto	eel Corr	osion Da	ata				Water Quality Data			
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	><	>>	>>
2 (0.0)			1	No corrosi	on data co	llected for	this report	•			8.10	9.30	0.094	59.3
3 (-2.0)											8.14	8.98	0.094	59.4
4 (-4.0)											8.14	9.02	0.094	59.4
5 (-6.0)											8.14	9.07	0.094	59.4
6 (-8.0)											8.16	8.86	0.095	59.4
7 (-10.0)											8.16	8.90	0.094	59.4
8 (-15.0)											8.16	8.90	0.094	59.4
9 (-20.0)											8.16	8.92	0.094	59.4
10 (*)											Bott	om was mea	asured at 30	feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD <10

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids: Notes: 1. See Plates 1 through 9 for locations of data. <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch. Hardness: 81 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.37 mg/L

> Sulfate lons: 4.1 mg/L

Chloride Ions:

Alkalinity: 47 mg/L

Data Entry Sheet

US Army Corps of Engineers

Structure Location: WILLIAM A IRVIN SLIP Corrosion Rating H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: MN SLIP (CR): M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: Water Quality 9/19/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: NA Surface Type NA

		Steel Corrosion Data									Water Quality Data			
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Temp
1 (+2.0)											\times	>>	\times	\times
2 (0.0)				No corrosi	on data co	llected for	this report				7.73	7.98	0.149	63.4
3 (-2.0)											7.73	8.04	0.149	63.4
4 (-4.0)											7.68	8.13	0.148	63.3
5 (-6.0)											7.68	8.23	0.146	63.3
6 (-8.0)											7.67	8.30	0.146	63.3
7 (-10.0)											7.68	8.35	0.146	63.3
8 (-15.0)														
9 (-20.0)														
10 (*)											Botto	m was mea	sured at 1	3 feet

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

mg/L

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons: 13

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: <10 mg/L

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness: 56 mg/L

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:** 0.47 mg/L

Sulfate lons: 6.9 mg/L

Alkalinity: 55 mg/L

Appendix D. Trace Chemical Analytical Report

TRACE ID	SAMPLE ID	MATRIX	METHOD	PARAMETER	DILUTION	RESULT	UNITS	RDL	QUALIFIER
GJ212-01	CUTLER MAGNER	W	SM18-2340 B	Hardness (as CaCO3)	11.1	68	mg/L	7.3	
GJ212-01	CUTLER MAGNER	W	SW846 6010B	Iron	10	0.21	mg/L	0.2	
GJ212-01	CUTLER MAGNER	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-01	CUTLER MAGNER	W	EPA 300.0	Chloride .	2	14	mg/L	10	
GJ212-01	CUTLER MAGNER	W	EPA 300.0	Sulfate (as SO4)	2	19	mg/L	1	
GJ212-01	CUTLER MAGNER	W	EPA 310.1	Alkalinity, Total	1	66	mg/L	10	
GJ212-02	DSPA BERTH #6	W	SM18-2340 B	Hardness (as CaCO3)	11.1	81	mg/L	7.3	
GJ212-02	DSPA BERTH #6	W	SW846 6010B	Iron	10	0.25	mg/L	0.2	
GJ212-02	DSPA BERTH #6	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-02	DSPA BERTH #6	W	EPA 300.0	Chloride	2	21	mg/L	10	
GJ212-02	DSPA BERTH #6	W	EPA 300.0	Sulfate (as SO4)	2	35	mg/L	1	
GJ212-02	DSPA BERTH #6	W	EPA 310.1	Alkalinity, Total	1	82	mg/L	10	
GJ212-03	CARGILL	W	SM18-2340 B	Hardness (as CaCO3)	11.1	53	mg/L	7.3	
GJ212-03	CARGILL	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-03	CARGILL	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-03	CARGILL	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-03	CARGILL	W	EPA 300.0	Sulfate (as SO4)	2	12	mg/L	1	
GJ212-03	CARGILL	W	EPA 310.1	Alkalinity, Total	1	53	mg/L	10	
GJ212-04	DECC	W	SM18-2340 B	Hardness (as CaCO3)	11.1	46	mg/L	7.3	
GJ212-04	DECC	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-04	DECC	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-04	DECC	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-04	DECC	W	EPA 300.0	Sulfate (as SO4)	2	4.6	mg/L	1	
GJ212-04	DECC	W	EPA 310.1	Alkalinity, Total	1	46	mg/L	10	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	SM18-2340 B	Hardness (as CaCO3)	11.1	56	mg/L	7.3	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	SW846 6010B	Iron	10	0.47	mg/L	0.2	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	EPA 300.0	Chloride	2	13	mg/L	10	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	EPA 300.0	Sulfate (as SO4)	2	6.9	mg/L	1	
GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	W	EPA 310.1	Alkalinity, Total	1	55	mg/L	10	
GJ212-06	VY2	W	SM18-2340 B	Hardness (as CaCO3)	11.1	49	mg/L	7.3	
GJ212-06	VY2	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-06	VY2	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-06	VY2	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-06	VY2	W	EPA 300.0	Sulfate (as SO4)	2	6.5	mg/L	1	
GJ212-06	VY2	W	EPA 310.1	Alkalinity, Total	1	49	mg/L	10	
GJ212-07	VY1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-07	VY1	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-07	VY1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-07	VY1	W	EPA 300.0	Chloride	2	<10	mg/L	10	

TDACE ID	CAMPLE ID	MATRIX	METHOD	DADAMETED	DILLITION	DECLUT	UNITS	BDI	OLIALIEIED
TRACE ID		MATRIX		PARAMETER	DILUTION			RDL	QUALIFIER
GJ212-07	VY1	W	EPA 300.0	Sulfate (as SO4)	2	6.4	mg/L	1	
GJ212-07	VY1	W	EPA 310.1	Alkalinity, Total	1	49	mg/L	10	
GJ212-09	CHS #1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	82	mg/L	7.3	
GJ212-09	CHS #1	W	SW846 6010B	Iron	10	0.29	mg/L	0.2	
GJ212-09	CHS #1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-09	CHS #1	W	EPA 300.0	Chloride	5	21	mg/L	10	
GJ212-09	CHS #1	W	EPA 300.0	Sulfate (as SO4)	5	32	mg/L	1	
GJ212-09	CHS #1	W	EPA 310.1	Alkalinity, Total	1	86	mg/L	10	
GJ212-12	SE 1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-12	SE 1	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-12	SE 1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-12	SE 1	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-12	SE 1	W	EPA 300.0	Sulfate (as SO4)	2	4.8	mg/L	1	
GJ212-12	SE 1	W	EPA 310.1	Alkalinity, Total	1	47	mg/L	10	
GJ212-13	SE 7	W	SM18-2340 B	Hardness (as CaCO3)	11.1	59	mg/L	7.3	
GJ212-13	SE 7	W	SW846 6010B	Iron	10	0.22	mg/L	0.2	
GJ212-13	SE 7	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-13	SE 7	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-13	SE 7	W	EPA 300.0	Sulfate (as SO4)	2	13	mg/L	1	
GJ212-13	SE 7	W	EPA 310.1	Alkalinity, Total	1	60	mg/L	10	
GJ212-14	SE 4	W	SM18-2340 B	Hardness (as CaCO3)	11.1	62	mg/L	7.3	
GJ212-14	SE 4	W	SW846 6010B	Iron	10	0.29	mg/L	0.2	
GJ212-14	SE 4	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-14	SE 4	W	EPA 300.0	Chloride	2	10	mg/L	10	
GJ212-14	SE 4	W	EPA 300.0	Sulfate (as SO4)	2	15	mg/L	1	
GJ212-14	SE 4	W	EPA 310.1	Alkalinity, Total	1	63	mg/L	10	
GJ212-15	SE 9	W	SM18-2340 B	Hardness (as CaCO3)	11.1	61	mg/L	7.3	
GJ212-15	SE 9	W	SW846 6010B	Iron	10	0.28	mg/L	0.2	
GJ212-15	SE 9	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-15	SE 9	W	EPA 300.0	Chloride	2	10	mg/L	10	
GJ212-15	SE 9	W	EPA 300.0	Sulfate (as SO4)	2	16	mg/L	10	
GJ212-15 GJ212-15	SE 9	W	EPA 310.1	Alkalinity, Total	1	62	_	10	
		W				63	mg/L		
GJ212-16	SE 10	W	SM18-2340 B	Hardness (as CaCO3)	11.1 10		mg/L	7.3	
GJ212-16	SE 10		SW846 6010B	Iron		0.33	mg/L	0.2	
GJ212-16	SE 10	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-16	SE 10	W	EPA 300.0	Chloride	2	11	mg/L	10	
GJ212-16	SE 10	W	EPA 300.0	Sulfate (as SO4)	2	16	mg/L	1	
GJ212-16	SE 10	W	EPA 310.1	Alkalinity, Total	1	64	mg/L	10	
GJ212-17	SE 2	W	SM18-2340 B	Hardness (as CaCO3)	11.1	53	mg/L	7.3	
GJ212-17	SE 2	W	SW846 6010B	Iron	10	0.21	mg/L	0.2	

TDACE ID	SAMPLE ID	MATRIX	METHOD	DADAMETED	DILLITION	RESULT	UNITS	DDI	OHALIEIED
TRACE ID				PARAMETER Total Cuspended Colide	DILUTION			RDL	QUALIFIER
GJ212-17	SE 2	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-17	SE 2	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-17	SE 2	W	EPA 300.0	Sulfate (as SO4)	2	8.9	mg/L	1	
GJ212-17	SE 2	W	EPA 310.1	Alkalinity, Total	1	53	mg/L	10	
GJ212-18	CGB2 ALT (CELL)	W	SM18-2340 B	Hardness (as CaCO3)	11.1	66	mg/L	7.3	
GJ212-18	CGB2 ALT (CELL)	W	SW846 6010B	Iron	10	0.25	mg/L	0.2	
GJ212-18	CGB2 ALT (CELL)	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-18	CGB2 ALT (CELL)	W	EPA 300.0	Chloride	2	13	mg/L	10	
GJ212-18	CGB2 ALT (CELL)	W	EPA 300.0	Sulfate (as SO4)	2	20	mg/L	1	
GJ212-18	CGB2 ALT (CELL)	W	EPA 310.1	Alkalinity, Total	1	66	mg/L	10	
GJ212-19	COMMUNITY SAILING DOCK	W	SM18-2340 B	Hardness (as CaCO3)	11.1	59	mg/L	7.3	
GJ212-19	COMMUNITY SAILING DOCK	W	SW846 6010B	Iron	10	0.21	mg/L	0.2	
GJ212-19	COMMUNITY SAILING DOCK	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-19	COMMUNITY SAILING DOCK	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-19	COMMUNITY SAILING DOCK	W	EPA 300.0	Sulfate (as SO4)	2	11	mg/L	1	
GJ212-19	COMMUNITY SAILING DOCK	W	EPA 310.1	Alkalinity, Total	1	54	mg/L	10	
GJ212-20	CGA1 (CELL)	W	SM18-2340 B	Hardness (as CaCO3)	11.1	90	mg/L	7.3	
GJ212-20	CGA1 (CELL)	W	SW846 6010B	Iron	10	0.37	mg/L	0.2	
GJ212-20	CGA1 (CELL)	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-20	CGA1 (CELL)	W	EPA 300.0	Chloride	2	19	mg/L	10	
GJ212-20	CGA1 (CELL)	W	EPA 300.0	Sulfate (as SO4)	2	28	mg/L	1	
GJ212-20	CGA1 (CELL)	W	EPA 310.1	Alkalinity, Total	1	86	mg/L	10	
GJ212-21	BONG BRIDGE CELL	W	SM18-2340 B	Hardness (as CaCO3)	11.1	93	mg/L	7.3	
GJ212-21	BONG BRIDGE CELL	W	SW846 6010B	Iron	10	0.62	mg/L	0.2	
GJ212-21	BONG BRIDGE CELL	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-21	BONG BRIDGE CELL	W	EPA 300.0	Chloride .	2	15	mg/L	10	
GJ212-21	BONG BRIDGE CELL	W	EPA 300.0	Sulfate (as SO4)	2	20	mg/L	1	
GJ212-21	BONG BRIDGE CELL	W	EPA 310.1	Alkalinity, Total	1	86	mg/L	10	
GJ212-22	CGCI (CELL)	W	SM18-2340 B	Hardness (as CaCO3)	11.1	98	mg/L	7.3	
GJ212-22	CGCI (CELL)	W	SW846 6010B	Iron	10	0.8	mg/L	0.2	
GJ212-22	CGCI (CELL)	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-22	CGCI (CELL)	W	EPA 300.0	Chloride	2	13	mg/L	10	
GJ212-22	CGCI (CELL)	W	EPA 300.0	Sulfate (as SO4)	2	15	mg/L	1	
GJ212-22	CGCI (CELL)	W	EPA 310.1	Alkalinity, Total	_ 1	89	mg/L	10	
GJ212-23	HALLETT 5	W	SM18-2340 B	Hardness (as CaCO3)	11.1	91	mg/L	7.3	
GJ212-23	HALLETT 5	W	SW846 6010B	Iron	10	0.21	mg/L	0.2	
GJ212-23	HALLETT 5	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-23	HALLETT 5	W	EPA 300.0	Chloride	2	21	mg/L	10	
GJ212-23	HALLETT 5	W	EPA 300.0	Sulfate (as SO4)	2	30	mg/L	10	
GJ212-23 GJ212-23	HALLETT 5	W	EPA 310.1	Alkalinity, Total	1	87	mg/L	10	
00212-20	IIALLIIJ	V V	LI A 310.1	Airaininy, Tolai	ı	01	my/L	10	

TRACE ID	SAMPLE ID	MATRIX	METHOD	PARAMETER	DILUTION	RESULT	UNITS	RDL	QUALIFIER
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	EPA 300.0	Sulfate (as SO4)	2	6.4	mg/L	1	
GJ212-24	LAKEHEAD BOAT BASIN # 1	W	EPA 310.1	Alkalinity, Total	1	48	mg/L	10	
GJ212-25	DE 9	W	SM18-2340 B	Hardness (as CaCO3)	11.1	46	mg/L	7.3	
GJ212-25	DE 9	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-25	DE 9	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-25	DE 9	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-25	DE 9	W	EPA 300.0	Sulfate (as SO4)	2	4.1	mg/L	1	
GJ212-25	DE 9	W	EPA 310.1	Alkalinity, Total	1	46	mg/L	10	
GJ212-26	DE 10	W	SM18-2340 B	Hardness (as CaCO3)	11.1	45	mg/L	7.3	
GJ212-26	DE 10	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-26	DE 10	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-26	DE 10	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-26	DE 10	W	EPA 300.0	Sulfate (as SO4)	2	4.3	mg/L	1	
GJ212-26	DE 10	W	EPA 310.1	Alkalinity, Total	1	45	mg/L	10	
GJ212-27	DE 8	W	SM18-2340 B	Hardness (as CaCO3)	11.1	45	mg/L	7.3	
GJ212-27	DE 8	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-27	DE 8	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-27	DE 8	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-27	DE 8	W	EPA 300.0	Sulfate (as SO4)	2	4.4	mg/L	1	
GJ212-27	DE 8	W	EPA 310.1	Alkalinity, Total	1	47	mg/L	10	
GJ212-28	DE 4	W	SM18-2340 B	Hardness (as CaCO3)	11.1	46	mg/L	7.3	
GJ212-28	DE 4	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-28	DE 4	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-28	DE 4	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-28	DE 4	W	EPA 300.0	Sulfate (as SO4)	2	5.2	mg/L	1	
GJ212-28	DE 4	W	EPA 310.1	Alkalinity, Total	1	48	mg/L	10	
GJ212-29	DE 7	W	SM18-2340 B	Hardness (as CaCO3)	11.1	46	mg/L	7.3	
GJ212-29	DE 7	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-29	DE 7	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-29	DE 7	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-29	DE 7	W	EPA 300.0	Sulfate (as SO4)	2	4.7	mg/L	1	
GJ212-29	DE 7	W	EPA 310.1	Alkalinity, Total	1	47	mg/L	10	
GJ212-30	DE 6	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-30	DE 6	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-30	DE 6	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-30	DE 6	W	EPA 300.0	Chloride	5	<10	mg/L	10	

TRACE ID	SAMPLE ID	MATRIX	METHOD	PARAMETER	DILUTION	RESULT	UNITS	RDL	QUALIFIER
GJ212-30	DE 6	W	EPA 300.0	Sulfate (as SO4)	5	5	mg/L	1	QUALITIEN
GJ212-30	DE 6	W	EPA 310.1	Alkalinity, Total	1	47	mg/L	10	
GJ212-30	DE 1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-31	DE 1	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-31	DE 1	W	EPA 160.2	Total Suspended Solids	10	<10	mg/L	10	
GJ212-31	DE 1	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-31	DE 1	W	EPA 300.0	Sulfate (as SO4)	2	4.1	mg/L	1	
GJ212-31 GJ212-31	DE 1	W	EPA 310.1	Alkalinity, Total	1	46	mg/L	10	
GJ212-31 GJ212-32	DE 2	W	SM18-2340 B	Hardness (as CaCO3)	11.1	45	mg/L	7.3	
GJ212-32 GJ212-32	DE 2	W	SW846 6010B	Iron	10	<0.20	-	0.2	
GJ212-32 GJ212-32	DE 2	W	EPA 160.2	Total Suspended Solids	10	<10	mg/L	10	
GJ212-32 GJ212-32	DE 2	W	EPA 300.0	Chloride	2	<10	mg/L	10	
	DE 2	W			2		mg/L		
GJ212-32	DE 2		EPA 300.0	Sulfate (as SO4)		4.1	mg/L	1	
GJ212-32		W	EPA 310.1	Alkalinity, Total	1	46 46	mg/L	10	
GJ212-33	DE 3	W	SM18-2340 B	Hardness (as CaCO3)	11.1	46	mg/L	7.3	
GJ212-33	DE 3	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-33	DE 3	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-33	DE 3	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-33	DE 3	W	EPA 300.0	Sulfate (as SO4)	2	4.2	mg/L	1	
GJ212-33	DE 3	W	EPA 310.1	Alkalinity, Total	1	46	mg/L	10	
GJ212-34	DE 5	W	SM18-2340 B	Hardness (as CaCO3)	11.1	47	mg/L	7.3	
GJ212-34	DE 5	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-34	DE 5	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-34	DE 5	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-34	DE 5	W	EPA 300.0	Sulfate (as SO4)	2	5.5	mg/L	1	
GJ212-34	DE 5	W	EPA 310.1	Alkalinity, Total	1	48	mg/L	10	
GJ212-35	SE 6	W	SM18-2340 B	Hardness (as CaCO3)	11.1	53	mg/L	7.3	
GJ212-35	SE 6	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-35	SE 6	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-35	SE 6	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-35	SE 6	W	EPA 300.0	Sulfate (as SO4)	2	9.5	mg/L	1	
GJ212-35	SE 6	W	EPA 310.1	Alkalinity, Total	1	53	mg/L	10	
GJ212-36	SE 5	W	SM18-2340 B	Hardness (as CaCO3)	11.1	48	mg/L	7.3	
GJ212-36	SE 5	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-36	SE 5	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-36	SE 5	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-36	SE 5	W	EPA 300.0	Sulfate (as SO4)	2	6	mg/L	1	
GJ212-36	SE 5	W	EPA 310.1	Alkalinity, Total	1	49	mg/L	10	
GJ212-37	SE 8	W	SM18-2340 B	Hardness (as CaCO3)	11.1	47	mg/L	7.3	
GJ212-37	SE 8	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	

TRACE ID	SAMPLE ID	MATRIX	METHOD	PARAMETER	DILUTION	RESULT	UNITS	RDL	QUALIFIER
GJ212-37	SE 8	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	Q071212.11
GJ212-37	SE 8	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-37	SE 8	W	EPA 300.0	Sulfate (as SO4)	2	5.6	mg/L	1	
GJ212-37	SE 8	W	EPA 310.1	Alkalinity, Total	1	49	mg/L	10	
GJ212-38	OLIVER BRIDGE	W	SM18-2340 B	Hardness (as CaCO3)	11.1	110	mg/L	7.3	
GJ212-38	OLIVER BRIDGE	W	SW846 6010B	Iron	10	0.23	mg/L	0.2	
GJ212-38	OLIVER BRIDGE	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-38	OLIVER BRIDGE	W	EPA 300.0	Chloride	2	11	mg/L	10	
GJ212-38	OLIVER BRIDGE	W	EPA 300.0	Sulfate (as SO4)	2	14	mg/L	1	
GJ212-38	OLIVER BRIDGE	W	EPA 310.1	Alkalinity, Total	_ 1	110	mg/L	10	
GJ212-39	HALLETT 7	W	SM18-2340 B	Hardness (as CaCO3)	11.1	94	mg/L	7.3	
GJ212-39	HALLETT 7	W	SW846 6010B	Iron	10	0.65	mg/L	0.2	
GJ212-39	HALLETT 7	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-39	HALLETT 7	W	EPA 300.0	Chloride	2	12	mg/L	10	
GJ212-39	HALLETT 7	W	EPA 300.0	Sulfate (as SO4)	2	14	mg/L	1	
GJ212-39	HALLETT 7	W	EPA 310.1	Alkalinity, Total	1	92	mg/L	10	
GJ212-40	SPIRIT LAKE MARINA	W	SM18-2340 B	Hardness (as CaCO3)	11.1	100	mg/L	7.3	
GJ212-40	SPIRIT LAKE MARINA	W	SW846 6010B	Iron	10	0.36	mg/L	0.2	
GJ212-40	SPIRIT LAKE MARINA	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-40	SPIRIT LAKE MARINA	W	EPA 300.0	Chloride	2	11	mg/L	10	
GJ212-40	SPIRIT LAKE MARINA	W	EPA 300.0	Sulfate (as SO4)	2	11	mg/L	1	
GJ212-40	SPIRIT LAKE MARINA	W	EPA 310.1	Alkalinity, Total	1	99	mg/L	10	
GJ212-41	TWO HARBORS	W	SM18-2340 B	Hardness (as CaCO3)	11.1	81	mg/L	7.3	
GJ212-41	TWO HARBORS	W	SW846 6010B	Iron	10	0.37	mg/L	0.2	
GJ212-41	TWO HARBORS	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-41	TWO HARBORS	W	EPA 300.0	Chloride	5	<10	mg/L	10	
GJ212-41	TWO HARBORS	W	EPA 300.0	Sulfate (as SO4)	5	4.1	mg/L	1	
GJ212-41	TWO HARBORS	W	EPA 310.1	Alkalinity, Total	1	47	mg/L	10	
GJ212-42	SE 3	W	SM18-2340 B	Hardness (as CaCO3)	11.1	61	mg/L	7.3	
GJ212-42	SE 3	W	SW846 6010B	Iron	10	0.42	mg/L	0.2	
GJ212-42	SE 3	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-42	SE 3	W	EPA 300.0	Chloride	2	<10	mg/L	10	
GJ212-42	SE 3	W	EPA 300.0	Sulfate (as SO4)	2	6.8	mg/L	1	
GJ212-42	SE 3	W	EPA 310.1	Alkalinity, Total	1	52	mg/L	10	
GJ212-43	DSPA BERTH 4	W	SM18-2340 B	Hardness (as CaCO3)	11.1	66	mg/L	7.3	
GJ212-43	DSPA BERTH 4	W	SW846 6010B	Iron	10	0.21	mg/L	0.2	
GJ212-43	DSPA BERTH 4	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-43	DSPA BERTH 4	W	EPA 300.0	Chloride	2	14	mg/L	10	
GJ212-43	DSPA BERTH 4	W	EPA 300.0	Sulfate (as SO4)	2	21	mg/L	1	
GJ212-43	DSPA BERTH 4	W	EPA 310.1	Alkalinity, Total	1	69	mg/L	10	

TRACE ID	SAMPLE ID	MATRIX	METHOD	PARAMETER	DILUTION	RESULT	UNITS	RDL	QUALIFIER
GJ212-44	DSPA BERTH 1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	61	mg/L	7.3	
GJ212-44	DSPA BERTH 1	W	SW846 6010B	Iron	10	<0.20	mg/L	0.2	
GJ212-44	DSPA BERTH 1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-44	DSPA BERTH 1	W	EPA 300.0	Chloride	5	27	mg/L	10	
GJ212-44	DSPA BERTH 1	W	EPA 300.0	Sulfate (as SO4)	2	16	mg/L	1	
GJ212-44	DSPA BERTH 1	W	EPA 310.1	Alkalinity, Total	1	60	mg/L	10	
GJ212-45	ERIE PIER 1	W	SM18-2340 B	Hardness (as CaCO3)	11.1	88	mg/L	7.3	
GJ212-45	ERIE PIER 1	W	SW846 6010B	Iron	10	0.63	mg/L	0.2	
GJ212-45	ERIE PIER 1	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-45	ERIE PIER 1	W	EPA 300.0	Chloride	2	17	mg/L	10	
GJ212-45	ERIE PIER 1	W	EPA 300.0	Sulfate (as SO4)	2	22	mg/L	1	
GJ212-45	ERIE PIER 1	W	EPA 310.1	Alkalinity, Total	1	89	mg/L	10	
GJ212-46	ERIE PIER 2	W	SM18-2340 B	Hardness (as CaCO3)	11.1	100	mg/L	7.3	
GJ212-46	ERIE PIER 2	W	SW846 6010B	Iron	10	0.71	mg/L	0.2	
GJ212-46	ERIE PIER 2	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-46	ERIE PIER 2	W	EPA 300.0	Chloride	2	16	mg/L	10	
GJ212-46	ERIE PIER 2	W	EPA 300.0	Sulfate (as SO4)	2	21	mg/L	1	
GJ212-46	ERIE PIER 2	W	EPA 310.1	Alkalinity, Total	1	89	mg/L	10	
GJ212-47	MIDWEST ENERGY	W	SM18-2340 B	Hardness (as CaCO3)	11.1	84	mg/L	7.3	
GJ212-47	MIDWEST ENERGY	W	SW846 6010B	Iron	10	0.43	mg/L	0.2	
GJ212-47	MIDWEST ENERGY	W	EPA 160.2	Total Suspended Solids	1	<10	mg/L	10	
GJ212-47	MIDWEST ENERGY	W	EPA 300.0	Chloride	5	21	mg/L	10	
GJ212-47	MIDWEST ENERGY	W	EPA 300.0	Sulfate (as SO4)	5	32	mg/L	1	
GJ212-47	MIDWEST ENERGY	W	EPA 310.1	Alkalinity, Total	1	93	mg/L	10	

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

October 17, 2006

Mr. Mark Resch Altech Environmental Services 17350 W. 10 Mile Road Suite 200 Southfield, MI 48075

248-559-5500

FAX: 248-559-5540

RE: Trace Project GJ212

Client Project DULUTH CORROSION / 9201-044

Dear Mr. Resch:

Enclosed are your analytical results.

All reports were examined through Trace's validation process to ensure that all requirements for quality and completeness were satisfied. All reported analytical results were obtained in accordance with the methods referenced on the reports. Every practical effort was made to meet the reporting limit specifications for this work.

If you have questions concerning this report, please contact me at (231)773-5998, or by e-mail at jmink@trace-labs.com.

Sincerely,

Joh Mink

Project Manager

Enclosures

phone fax

231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

AN EXPLANATION OF TERMS AND SYMBOLS WHICH MAY OCCUR IN THIS REPORT

QC DEFINITIONS

LCS Laboratory Control Sample

Laboratory Control Sample Duplicate LCSD

MS Matrix Spike

Matrix Spike Duplicate MSD **RPD** Relative Percent Difference

DUP Matrix Duplicate

QUALIFIER KEYS These descriptors will be associated with the individual results for a specific sample and a specific analyte and will help qualify the data

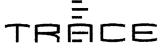
<, ND, or U Indicates the compound was analyzed for but not detected

Indicates an estimated value J

Indicates the analyte is found in the blank associated with the sample В

Ε Indicates the analyte exceeded the range of calibration

Indicates that a QC result was outside the acceptance criterion or that a sample result


exceeded an MCL

OTHER DEFINITIONS

RDL	Reporting Detection Limit
MCL	Maximum Contamination Limit
TIC	Tentatively Identified Compound
TPC	Time-Proportional Composite
FPC	Flow-Proportional Composite

CERTIFICATE OF ANALYSIS

Page 2 of 67 Report ID: 13761 - 618481

fax

phone 231.773.5998 tall-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID						
G212-02 DSPA BERTH #6 Water Client 09/19/06 10.30 09/21/06 10:25	Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
GJ212-03	GJ212-01	CUTLER MAGNER	Water	Client	09/19/06 09:40	09/21/06 10:25
G_212-06 G_212-06 G_212-06 G_212-06 G_212-07 G_212-08 G_212-08 G_212-08 G_212-08 G_212-09 G_212-12 S_E 1 G_212-13 S_E 7 Water G_1001 G_212-13 S_E 7 Water G_1001 G_212-14 S_E 4 G_212-15 S_E 9 Water G_1001 G_212-16 S_E 10 G_212-16 S_E 10 G_212-17 S_E 2 Water G_1001 G_212-19 G_2	GJ212-02	DSPA BERTH #6	Water	Client	09/19/06 10:30	09/21/06 10:25
G212-05 G1212-05 G1212-06 G1212-06 G1212-07 G1212-07 G1212-09 CHS #1 Water Client G19/19/06 14:20 G1212-09 CHS #1 Water Client G19/19/06 14:20 G1212-09 G1212-12 SE 1 Water Client G19/19/06 16:25 G1212-13 SE 7 Water Client G19/19/06 16:25 G1212-14 SE 4 Water Client G19/19/06 10:25 G1212-15 SE 9 Water Client G19/19/06 10:25 G1212-15 SE 9 Water Client G19/19/06 10:25 G1212-16 G1212-17 SE 2 Water Client G19/20/06 10:25 G1212-18 CGB2 ALT (CELL) Water Client G19/20/06 11:00 G1212-19 COMMUNITY SAILING DOCK Water Client G19/20/06 12:50 G1212-21 BONG BRIDGE CELL Water MR/Client G19/20/06 16:05 G1212-22 CGCI (CELL) Water MR/Client G19/20/06 16:05 G1212-23 HALLETT 5 DE 9 Water MR/Client G19/20/06 16:05 G1212-25 DE 9 Water MR/Client G19/20/06 16:05 G1212-26 G1212-26 DE 10 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-27 DE 8 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-27 DE 8 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-26 DE 10 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-27 DE 8 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 4 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/20/06 16:05 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/21/06 06:10 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/21/06 10:25 G123/06 11:30 G1212-28 DE 9 Water MR/Client G19/21/06 10:25 G123/06 11:30 G1212-31 DE 1 Water MR/Client G19/21/06 10:25 G123/06 11:30 G1212-31 DE 1 Water MR/Client G19/21/06 10:25 G123/06 11:30 G1212-33 DE 3 Water MR/Client G1210 G1216 G126 G1212-33 DE 3 G1212-36 DE 5 Water MR/Client G1210 G1216 G126 G1210 G126 G126 G1212-39 DE 7 Water MR/Client G1210 G1216 G126 G1212-39 DE 10 G1212-39 DE 3 G1212-39 DE 3 G1212-39 DE 5 G1212-39 DE 5 G1212-39 DE 6 G1212-39 DE	GJ212-03	CARGILL	Water	Client	09/19/06 11:35	09/21/06 10:25
GJ212-06 GJ212-07 VY1 VY1 Water Client Og/19/06 14:45 Og/21/06 10:25 GJ212-09 CHS #1 Water Client Og/19/06 14:45 Og/21/06 10:25 GJ212-12 SE 1 Water Client Og/20/06 09:30 Og/21/06 10:25 GJ212-13 SE 7 Water Client Og/20/06 09:30 Og/21/06 10:25 GJ212-14 SE 4 Water Client Og/20/06 10:05 Og/21/06 10:25 GJ212-15 SE 9 Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-16 SE 10 Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-16 SE 10 Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-17 SE 2 Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client Og/20/06 10:45 Og/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client Og/20/06 15:05 Og/21/06 10:25 Og/21/22 CGCI (CELL) Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 CGCI (CELL) Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 CGCI (CELL) Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 9 Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 9 Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 9 Water MR/Client Og/20/06 16:05 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 9 Water MR/Client Og/21/06 09:05 Og/23/06 11:30 Og/21/22 DE 0E 0 Water MR/Client Og/21/06 00:05 Og/23/06 11:30 Og/21/22 DE 0E 0 Water MR/Client Og/21/06 10:25 Og/23/06 11:30 Og/21/22 DE 0E 0 Water MR/Client Og/21/06 10:25 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 0E 0 Water MR/Client Og/21/06 10:25 Og/23/06 11:30 Og/23/06 11:30 Og/21/22 DE 0E 0 Water MR/Client Og/21/06 10:25 Og/23/06 11:30 Og/23/06 11	GJ212-04	DECC	Water	Client	09/19/06 12:10	09/21/06 10:25
GJ212-07 VY1 Water Client 09/19/06 14:45 09/21/06 10:25 GJ212-09 CHS #1 Water Client 09/19/06 15:45 09/21/06 10:25 GJ212-12 SE 1 Water Client 09/20/06 09:30 09/21/06 10:25 GJ212-13 SE 7 Water Client 09/20/06 09:30 09/21/06 10:25 GJ212-13 SE 7 Water Client 09/20/06 09:35 09/21/06 10:25 GJ212-14 SE 4 Water Client 09/20/06 09:35 09/21/06 10:25 GJ212-15 SE 9 Water Client 09/20/06 10:05 09/21/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 11:00 09/21/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 13:00 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN #1 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 10:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-29 DE 2 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-39 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-39 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 O9/23/06 11:30 O9/23/06 11:30 O9/23/06 11:30 O9/23/06 11:30 O9/23/06	GJ212-05	MN SLIP (WILLIAM A IRVIN SLIP)	Water	Client	09/19/06 12:50	09/21/06 10:25
GZ12-09 CHS #1 Water Client 09/19/06 15-45 09/21/06 10:25 GZ12-12 SE 1 Water Client 09/20/06 09:00 09/21/06 10:25 GZ12-13 SE 7 Water Client 09/20/06 09:35 09/21/06 10:25 GZ12-14 SE 4 Water Client 09/20/06 10:05 09/21/06 10:25 GZ12-15 SE 9 Water Client 09/20/06 10:45 09/21/06 10:25 GZ12-15 SE 9 Water Client 09/20/06 11:10 09/21/06 10:25 GZ12-15 SE 9 Water Client 09/20/06 11:10 09/21/06 10:25 GZ12-16 SE 10 Water Client 09/20/06 11:10 09/21/06 10:25 GZ12-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GZ12-18 CGB2 ALT (CELL) Water Client 09/20/06 12:20 09/21/06 10:25 GZ12-19 COMMUNITY SAILING DOCK Water MR/Client 09/20/06 12:50 09/21/06 10:25 GZ12-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GZ12-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GZ12-22 CGGI (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GZ12-22 CGGI (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GZ12-22 CGGI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GZ12-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GZ12-24 LAKEHEAD BOAT BASIN #1 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GZ12-25 DE 9 Water MR/Client 09/20/06 08:10 09/23/06 11:30 GZ12-25 DE 9 Water MR/Client 09/20/06 08:10 09/23/06 11:30 GZ12-26 DE 10 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GZ12-27 DE 8 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GZ12-28 DE 4 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GZ12-29 DE 7 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GZ12-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GZ12-29 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GZ12-23 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GZ12-23 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GZ12-35 SE 6 Water MR/Client 09/21/06 14:00 09/23/06 11:30 GZ12-35 SE 6 Water MR/Client 09/21/06 14:00 09/23/06 11:30 GZ12-36 SE 5 Water MR/Client 09/21/06 14:00 09/23/06 11:30 GZ12-38 DLIVER BRIDGE Water MR/Client 09/21/06 14:00 09/23/06 11:30 OZ23/06 11:30 OZ212-39 DLIVER BRIDGE Water MR/Client 09/21/06 14:00 09/23/06 11:30 OZ23/	GJ212-06	VY2	Water	Client	09/19/06 14:20	09/21/06 10:25
GJ212-12 SE 1 Water Client 09/20/06 09:00 09/21/06 10:25 GJ212-13 SE 7 Water Client 09/20/06 09:35 09/21/06 10:25 GJ212-14 SE 4 Water Client 09/20/06 09:35 09/21/06 10:25 GJ212-15 SE 9 Water Client 09/20/06 10:05 09/21/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 11:10 09/21/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 11:10 09/21/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 11:10 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 13:20 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 10:25 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:30 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-39 SE 8 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-39 DL 0LIVER BRIDGE WATER MR/Client 09/21/06 11:00 09/23/06 11:30 O9/23/06 11:30 O9/23/06 11:30 O9/23/06 11:30 O9/23/06 1	GJ212-07	VY1	Water	Client	09/19/06 14:45	09/21/06 10:25
GJ212-13 SE 7 Water Client 09/20/06 09:35 09/21/06 10:25 GJ212-14 SE 4 Water Client 09/20/06 10:05 09/21/06 10:25 GJ212-15 SE 9 Water Client 09/20/06 10:05 09/21/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 10:45 09/21/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 13:20 09/21/06 10:25 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-26 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-28 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-39 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-39 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-39 DE 5 Water MR/Client 09/	GJ212-09	CHS #1	Water	Client	09/19/06 15:45	09/21/06 10:25
GJ212-14 SE 4 Water Client 09/20/06 10.05 09/21/06 10.25 GJ212-15 SE 9 Water Client 09/20/06 10.45 O9/21/06 10.25 GJ212-16 SE 10 Water Client 09/20/06 11.10 09/21/06 10.25 GJ212-17 SE 2 Water Client 09/20/06 12.20 09/21/06 10.25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12.20 09/21/06 10.25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13.20 09/21/06 10.25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 13.20 09/21/06 10.25 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15.05 09/23/06 11.30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 15.05 09/23/06 11.30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16.05 09/23/06 11.30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16.05 09/23/06 11.30 GJ212-26 DE 10 Water MR/Client 09/20/06 16.05 09/23/06 11.30 GJ212-26 DE 00 10 Water MR/Client 09/20/06 16.05 09/23/06 11.30 GJ212-27 DE 8 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-29 DE 7 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-29 DE 7 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-29 DE 7 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-30 DE 6 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-30 DE 6 Water MR/Client 09/21/06 09.40 09/23/06 11.30 GJ212-33 DE 3 Water MR/Client 09/21/06 10.25 09/23/06 11.30 GJ212-33 DE 3 Water MR/Client 09/21/06 10.25 09/23/06 11.30 GJ212-34 DE 5 Water MR/Client 09/21/06 10.25 09/23/06 11.30 GJ212-34 DE 5 Water MR/Client 09/21/06 10.25 09/23/06 11.30 GJ212-35 SE 6 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-36 SE 5 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-37 SE 8 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA 14.LETT 7 Water MR/Client 09/21/06 12.05 09/23/06 11.30 GJ212-39 DA	GJ212-12	SE 1	Water	Client	09/20/06 09:00	09/21/06 10:25
GJ212-15 SE 9 Water Client 09/20/06 10:25 GJ212-16 SE 10 Water Client 09/20/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 11:20 09/21/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGG1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGG1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-26 DE 9 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/20/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 14:05 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 14:05 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 14:05 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:05 09/23/06 11:30 GJ212-39 HALLETT Water MR/Client 09/21/06 14:05 09/23/06 11:30 GJ212-39 HALLETT WATER DATE DATE DATE DATE DATE DATE DATE DATE	GJ212-13	SE 7	Water	Client	09/20/06 09:35	09/21/06 10:25
GJ212-16 SE 10 Water Client 09/20/06 11:10 09/21/06 10:25 GJ212-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 13:20 09/21/06 10:25 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/20/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:00 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 6 Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE Water MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE WATER MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE WATER MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE WATER MR/Client 09/21/06 10:45 09/23/06 11:30 GJ212-39 DA GLIVER BRIDGE	GJ212-14	SE 4	Water	Client	09/20/06 10:05	09/21/06 10:25
GJ212-17 SE 2 Water Client 09/20/06 12:20 09/21/06 10:25 GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:35 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 08:40 09/23/06 11:	GJ212-15	SE 9	Water	Client	09/20/06 10:45	09/21/06 10:25
GJ212-18 CGB2 ALT (CELL) Water Client 09/20/06 12:50 09/21/06 10:25 GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 2 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:15 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 OLIVER BRIDGE	GJ212-16	SE 10	Water	Client	09/20/06 11:10	09/21/06 10:25
GJ212-19 COMMUNITY SAILING DOCK Water Client 09/20/06 13:20 09/21/06 10:25 GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 10:00 09/23/06 11:30 GJ212-39 HALLETT 7	GJ212-17	SE 2	Water	Client	09/20/06 12:20	09/21/06 10:25
GJ212-20 CGA1 (CELL) Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:05 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 09/21/06 18:00 09/23/06 11:30 O9/23/06 11:30 O9/	GJ212-18	CGB2 ALT (CELL)	Water	Client	09/20/06 12:50	09/21/06 10:25
GJ212-21 BONG BRIDGE CELL Water MR/Client 09/20/06 15:35 09/23/06 11:30 GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 17:20 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-19	COMMUNITY SAILING DOCK	Water	Client	09/20/06 13:20	09/21/06 10:25
GJ212-22 CGCI (CELL) Water MR/Client 09/20/06 16:05 09/23/06 11:30 GJ212-23 HALLETT 5 Water MR/Client 09/20/06 16:45 09/23/06 11:30 GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 17:20 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 DE 10 00 00 00 00 00 00 00 00 00 00 00 00	GJ212-20	CGA1 (CELL)	Water	MR/Client	09/20/06 15:05	09/23/06 11:30
Mater MR/Client O9/20/06 16:45 O9/23/06 11:30	GJ212-21	BONG BRIDGE CELL	Water	MR/Client	09/20/06 15:35	09/23/06 11:30
GJ212-24 LAKEHEAD BOAT BASIN # 1 Water MR/Client 09/20/06 17:20 09/23/06 11:30 GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ23/12-39 HALLETT 7 Water MR/Client	GJ212-22	CGCI (CELL)	Water	MR/Client	09/20/06 16:05	09/23/06 11:30
GJ212-25 DE 9 Water MR/Client 09/21/06 08:10 09/23/06 11:30 GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8<	GJ212-23	HALLETT 5	Water	MR/Client	09/20/06 16:45	09/23/06 11:30
GJ212-26 DE 10 Water MR/Client 09/21/06 08:40 09/23/06 11:30 GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-24	LAKEHEAD BOAT BASIN # 1	Water	MR/Client	09/20/06 17:20	09/23/06 11:30
GJ212-27 DE 8 Water MR/Client 09/21/06 09:05 09/23/06 11:30 GJ212-28 DE 4 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30	GJ212-25	DE 9	Water	MR/Client	09/21/06 08:10	09/23/06 11:30
GJ212-28 GJ212-29 DE 7 Water MR/Client 09/21/06 09:40 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-35 GJ212-36 GJ212-36 GJ212-37 SE 8 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-26	DE 10	Water	MR/Client	09/21/06 08:40	09/23/06 11:30
GJ212-29 DE 7 Water MR/Client 09/21/06 10:05 09/23/06 11:30 GJ212-30 DE 6 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:40 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 Water MR/Client 09/22/06 08:15 09/23/06 11:30 GJ212-39 UNITED DE MR/CLIENT 09/	GJ212-27	DE 8	Water	MR/Client	09/21/06 09:05	09/23/06 11:30
GJ212-30 DE 6 Water MR/Client 09/21/06 10:35 09/23/06 11:30 GJ212-31 DE 1 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-28	DE 4	Water	MR/Client	09/21/06 09:40	09/23/06 11:30
GJ212-31 DE 1 Water MR/Client 09/21/06 11:00 09/23/06 11:30 GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-29	DE 7	Water	MR/Client	09/21/06 10:05	09/23/06 11:30
GJ212-32 DE 2 Water MR/Client 09/21/06 11:20 09/23/06 11:30 GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 16:00 09/23/06 11:30	GJ212-30	DE 6	Water	MR/Client	09/21/06 10:35	09/23/06 11:30
GJ212-33 DE 3 Water MR/Client 09/21/06 11:40 09/23/06 11:30 GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/21/06 08:15 09/23/06 11:30	GJ212-31	DE 1	Water	MR/Client	09/21/06 11:00	09/23/06 11:30
GJ212-34 DE 5 Water MR/Client 09/21/06 12:05 09/23/06 11:30 GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-32	DE 2	Water	MR/Client	09/21/06 11:20	09/23/06 11:30
GJ212-35 SE 6 Water MR/Client 09/21/06 13:45 09/23/06 11:30 GJ212-36 SE 5 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-33	DE 3	Water	MR/Client	09/21/06 11:40	09/23/06 11:30
GJ212-36 SE 5 Water MR/Client 09/21/06 14:10 09/23/06 11:30 GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-34	DE 5	Water	MR/Client	09/21/06 12:05	09/23/06 11:30
GJ212-37 SE 8 Water MR/Client 09/21/06 14:45 09/23/06 11:30 GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-35	SE 6	Water	MR/Client	09/21/06 13:45	09/23/06 11:30
GJ212-38 OLIVER BRIDGE Water MR/Client 09/21/06 16:00 09/23/06 11:30 GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-36	SE 5	Water	MR/Client	09/21/06 14:10	09/23/06 11:30
GJ212-39 HALLETT 7 Water MR/Client 09/22/06 08:15 09/23/06 11:30	GJ212-37	SE 8	Water	MR/Client	09/21/06 14:45	09/23/06 11:30
00212 00	GJ212-38	OLIVER BRIDGE	Water	MR/Client	09/21/06 16:00	09/23/06 11:30
GJ212-40 SPIRIT LAKE MARINA Water MR/Client 09/22/06 08:45 09/23/06 11:30	GJ212-39	HALLETT 7	Water	MR/Client	09/22/06 08:15	09/23/06 11:30
	GJ212-40	SPIRIT LAKE MARINA	Water	MR/Client	09/22/06 08:45	09/23/06 11:30

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Page 3 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

SAMPLE SUMMARY

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID	Sample ID	Matrix	Collected By	Date Collected	Date Received
GJ212-41	TWO HARBORS	Water	MR/Client	09/24/06 09:45	09/26/06 10:27
GJ212-42	SE 3	Water	MR/Client	09/24/06 11:50	09/26/06 10:27
GJ212-43	DSPA BERTH 4	Water	MR/Client	09/24/06 12:20	09/26/06 10:27
GJ212-44	DSPA BERTH 1	Water	MR/Client	09/24/06 12:50	09/26/06 10:27
GJ212-45	ERIE PIER 1	Water	MR/Client	09/24/06 13:25	09/26/06 10:27
GJ212-46	ERIE PIER 2	Water	MR/Client	09/24/06 13:45	09/26/06 10:27
GJ212-47	MIDWEST ENERGY	Water	MR/Client	09/24/06 14:20	09/26/06 10:27

Page 4 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-01

Date Collected: 09/19/06 09:40

Matrix: Water

09/26/06

at

Sample ID:

Alkalinity, Total

CUTLER MAGNER

Date Received: 09/21/06 10:25

PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MC
INORGANICS									
Analysis Desc: SM18-2340B, Hardness									
Hardness (as CaCO3)	68 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analysis,	Total Waters								
Iron	0.21 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Susper	nded Solids								
Total Suspended Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Desc: EPA 300.0R2.1, Anions							***		
Chloride	14 mg/L	10	2			09/25/06	at		
Sulfate (as SO4)	19 mg/L	1.0	2			09/25/06	at		

10

66 mg/L

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-02

Date Collected: 09/19/06 10:30

09/21/06

Matrix: Water

Sample ID:

DSPA BERTH#6

Date Received: 09/21/06 10:25

RDL

DILUTION PREPARED

ANALYZED BY QUAL MCL

PARAMETERS INORGANICS

Iron

Chloride

Sulfate (as SO4)

Alkalinity, Total

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

81 mg/L

RESULTS UNITS

7.3

09/28/06

Analysis Desc: SW846 6010B Analysis, Total Waters

Analysis Desc: EPA 160.2, Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Analysis Desc: EPA 310.1, Alkalinity, Total

Total Suspended Solids

WET CHEMISTRY

0.25 mg/L

<10 mg/L

21 mg/L

35 mg/L

82 mg/L

0.20

10

10

1.0

10

CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

11.1

10

1

2

2

1

09/29/06

09/22/06

BY

da

pad

pad

pad

at

09/25/06 09/25/06 at

09/26/06

at

fax

phone 231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

Alkalinity, Total

GJ212-03

Date Collected: 09/19/06 11:35

Matrix: Water

Sample ID: CARGILL		Date Re	eceived: 09	9/21/06 10:25					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hardn	ess								
Hardness (as CaCO3)	53 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analy	rsis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Sus	spended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Desc: EPA 300.0R2.1, Anic	ons								
Chloride	<10 mg/L	10	2			09/25/06	at		
Sulfate (as SO4)	12 mg/L	1.0	2			09/25/06	at		
Analysis Desc: EPA 310.1, Alkalinity	, Total								
Alkalinity, Total	53 mg/L	10	1			09/26/06	at		

Page 7 of 67 Report ID: 13761 - 618481

231.773.5998 phone toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-04

Date Collected: 09/19/06 12:10

Matrix: Water

ANALYZED

09/28/06

Sample ID:

DECC

Date Received: 09/21/06 10:25

RDL

0.20

10

DILUTION PREPARED

MCL QUAL BY

INORGANICS

PARAMETERS

Analysis Desc: SW846 6010B Analysis, Total Waters

Hardness (as CaCO3)

46 mg/L

RESULTS UNITS

7.3

BY

pad

Iron

Analysis Desc: SM18-2340B, Hardness

<0.20 mg/L

11.1

10

09/21/06

09/29/06 da

pad

WET CHEMISTRY

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids Analysis Desc: EPA 300.0R2.1, Anions

<10 mg/L

<10 mg/L

10 1.0

2 2

1

09/25/06 09/25/06

09/22/06

at at

pad

Chloride

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

Sulfate (as SO4)

46 mg/L

4.6 mg/L

10

1

09/26/06

at

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

DULUTH CORROSION / 9201-044 Client Project ID:

Trace ID:

GJ212-05

Date Collected: 09/19/06 12:50

Matrix: Water

Sample ID:

MN SLIP (WILLIAM A IRVIN SLIP)

RDL

0.20

10

1.0

Date Received: 09/21/06 10:25

DILUTION PREPARED

MCL QUAL **ANALYZED** BY

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

56 mg/L

11.1

10

1

2

2

09/28/06 pad

09/29/06

Analysis Desc: SW846 6010B Analysis, Total Waters

7.3

09/21/06

BY

da

pad

WET CHEMISTRY

Iron

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

<10 mg/L

13 mg/L

6.9 mg/L

0.47 mg/L

RESULTS UNITS

10

09/22/06

pad

at

at

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

Sulfate (as SO4)

Chloride

55 mg/L

10

1

09/25/06

09/25/06

09/26/06 at

CERTIFICATE OF ANALYSIS This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Report ID: 13761 - 618481

Page 9 of 67

phone toll-free fax 231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID: GJ212-06

Date Collected:

09/19/06 14:20

Matrix: Water

09/21/06 10:25 Date Received: Sample ID: VY2 DILUTION PREPARED ΒY BY QUAL MCL **RESULTS UNITS RDL ANALYZED PARAMETERS INORGANICS** Analysis Desc: SM18-2340B, Hardness 11.1 09/28/06 Hardness (as CaCO3) 49 mg/L 7.3 pad Analysis Desc: SW846 6010B Analysis, Total Waters 10 Iron <0.20 mg/L 0.20 09/21/06 da 09/29/06 pad WET CHEMISTRY Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/22/06 Total Suspended Solids <10 mg/L 10 pad Analysis Desc: EPA 300.0R2.1, Anions Chloride <10 mg/L 10 2 09/25/06 at 6.5 mg/L 1.0 2 09/25/06 at Sulfate (as SO4) Analysis Desc: EPA 310.1, Alkalinity, Total 49 mg/L 10 1 09/26/06 at Alkalinity, Total

Report ID: 13761 - 618481 Page 10 of 67

phone toll-free

231.773.5998 800.733.5998 231.773.6537

<10 mg/L

6.4 mg/L

49 mg/L

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID: GJ212-07 Date Collected: 09/19/06 14:45

Matrix: Water

09/25/06

09/25/06

09/26/06

at

at

at

Sample ID: VY1

Chloride

Sulfate (as SO4)

Alkalinity, Total

Analysis Desc: EPA 310.1, Alkalinity, Total

Date Received: 09/21/06 10:25

2

2

1

RESULTS UNITS RDL DILUTION PREPARED BY **ANALYZED** BY QUAL MCL **PARAMETERS INORGANICS** Analysis Desc: SM18-2340B, Hardness 11.1 09/28/06 48 mg/L 7.3 pad Hardness (as CaCO3) Analysis Desc: SW846 6010B Analysis, Total Waters 10 09/21/06 09/29/06 <0.20 mg/L 0.20 da pad Iron WET CHEMISTRY Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/22/06 <10 mg/L 10 pad **Total Suspended Solids** Analysis Desc: EPA 300.0R2.1, Anions

10

1.0

10

CERTIFICATE OF ANALYSIS

Page 11 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 fax 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Data Callastad: 00/10/06 15:45

Matrix: Water

Trace ID:	GJ212-09		Date Co	ollected: 09	9/19/06 15:45		Matrix: Water			
Sample ID:	CHS #1		Date Received: 09/21/06 10:25							
PARAMETE	RS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANIC	s									
Analysis Des	sc: SM18-2340B, Hardr	ness								
Hardness (a	as CaCO3)	82 mg/L	7.3	11.1			09/28/06	pad		
Analysis Des	sc: SW846 6010B Anal	ysis, Total Waters								
Iron		0.29 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEM	ISTRY									
Analysis Des	sc: EPA 160.2, Total Su	spended Solids								
Total Susper	nded Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Des	sc: EPA 300.0R2.1, Ani	ons							.,	
Chloride		21 mg/L	10	5			09/25/06	at		
Sulfate (as	SO4)	32 mg/L	1.0	5			09/25/06	at		
Analysis Des	sc: EPA 310.1, Alkalinity	y, Total								
Alkalinity, To	otal	86 mg/L	10	1			10/03/06	at		

Page 12 of 67 Report ID: 13761 - 618481

231.773.5998 toll-free 800.733.5998 fax 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

G 1212-12

Date Collected: 09/20/06 09:00

Matrix: Water

Trace ID:	GJ212-12				9/20/00 05.00		Matrix. Water			
Sample ID:	SE 1		Date Re	eceived: 09	ceived: 09/21/06 10:25					
PARAMETE	RS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANIC	:s									
Analysis Des	sc: SM18-2340B, Hardne	ess								
Hardness (a	as CaCO3)	48 mg/L	7.3	11.1			09/28/06	pad		
Analysis Des	sc: SW846 6010B Analys	sis, Total Waters	11.100							
Iron		<0.20 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEM	ISTRY									
Analysis Des	sc: EPA 160.2, Total Sus	pended Solids								
Total Susper	nded Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Des	sc: EPA 300.0R2.1, Anio	ns				•				
Chloride		<10 mg/L	10	2			09/25/06	at		
Sulfate (as	SO4)	4.8 mg/L	1.0	2			09/25/06	at		
Analysis Des	sc: EPA 310.1, Alkalinity,	Total			**					
Alkalinity, T	-otal	47 mg/L	10	1			10/03/06	at		

Page 13 of 67 Report ID: 13761 - 618481

fax

phone 231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

C 1242 42

Date Collected: 09/20/06 09:35

Matrix: Water

Trace ID:	GJ212-13		Date Co	ollected: Us	9/20/06 09:35		Matrix: Water			
Sample ID:	SE 7		Date Received: 09/21/06 10:25							
PARAMETER	RS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANIC	s									
Analysis Des	c: SM18-2340B, Hardı	ness								
Hardness (as	s CaCO3)	59 mg/L	7.3	11.1			09/28/06	pad		
Analysis Des	c: SW846 6010B Anal	ysis, Total Waters								
Iron		0.22 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEMIS	STRY									
Analysis Des	c: EPA 160.2, Total Su	spended Solids								
Total Suspend	ded Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Des	c: EPA 300.0R2.1, Ani	ons			Just Paris		· · ·			
Chloride		<10 mg/L	10	2			09/25/06	at		
Sulfate (as S	604)	13 mg/L	1.0	2			09/25/06	at		
Analysis Des	c: EPA 310.1, Alkalinit	y, Total								
Alkalinity, To	otal	60 mg/L	10	1			10/03/06	at		

Page 14 of 67 Report ID: 13761 - 618481

231.773.5998 800.733.5998 phone toll-free fax

231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID: GJ212-14 Date Collected: 09/20/06 10:05

Matrix: Water

Sample ID: SE 4		Date R	eceived: 09	9/21/06 10:25					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hard	Iness							****	
Hardness (as CaCO3)	62 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Ana	lysis, Total Waters			- WELL					
Iron	0.29 mg/L	0.20	10	09/21/06	da	09/29/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Su	uspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/22/06	pad		
Analysis Desc: EPA 300.0R2.1, Ani	ions				-	1814			
Chloride	10 mg/L	10	2			09/25/06	at		
Sulfate (as SO4)	15 mg/L	1.0	2			09/25/06	at		
Analysis Desc: EPA 310.1, Alkalinit	y, Total	· · · · · ·					•		
Alkalinity, Total	63 mg/L	10	1			10/03/06	at		

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-15

Date Collected: 09/20/06 10:45

09/21/06

Matrix: Water

ANALYZED

Sample ID:

SE 9

Date Received:

09/21/06 10:25

DILUTION PREPARED

BY QUAL. MCL

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Analysis Desc: SW846 6010B Analysis, Total Waters

Analysis Desc: EPA 160.2, Total Suspended Solids

Hardness (as CaCO3)

WET CHEMISTRY

Total Suspended Solids

Iron

Chloride

Sulfate (as SO4)

Alkalinity, Total

61 mg/L

0.28 mg/L

<10 mg/L

RESULTS UNITS

7.3

0.20

RDL

11.1

10

09/28/06

pad

BY

da

09/29/06

pad

09/22/06

pad

at

at

at

09/25/06 09/25/06

10

2 2

1

10/03/06

Analysis Desc: EPA 310.1, Alkalinity, Total

Analysis Desc: EPA 300.0R2.1, Anions

62 mg/L

10 mg/L

16 mg/L

10

10

1.0

1

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc. Page 16 of 67 Report ID: 13761 - 618481

CERTIFICATE OF ANALYSIS

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-16

Date Collected: 09/20/06 11:10

09/21/06

da

Matrix: Water

09/29/06

10/03/06

pad

at

Sample ID:

Alkalinity, Total

SE 10

10

1

Date Received: 09/21/06 10:25

RESULTS UNITS RDL DILUTION PREPARED ANALYZED BY QUAL MCL **PARAMETERS INORGANICS**

Analysis Desc: SM18-2340B, Hardness

11.1 09/28/06 63 mg/L 7.3 pad Hardness (as CaCO3) Analysis Desc: SW846 6010B Analysis, Total Waters

0.33 mg/L

64 mg/L

WET CHEMISTRY Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/22/06 <10 mg/L 10 pad Total Suspended Solids Analysis Desc: EPA 300.0R2.1, Anions 2 09/25/06 Chloride 11 mg/L 10 at 2 09/25/06 at Sulfate (as SO4) 16 mg/L 1.0 Analysis Desc: EPA 310.1, Alkalinity, Total

10

0.20

CERTIFICATE OF ANALYSIS

Page 17 of 67 Report ID: 13761 - 618481

phone toll-free 800.733.5998 fax

231.773.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 920 - 044

Trace ID:

GJ212-17

Date Collected: 09/20/06 12:20

Matrix: Water

Sample ID:

SE 2

RDL

0.20

10

10

10

Date Received: 09/21/06 10:25

DILUTION PREPARED

BY QUAL MCL **ANALYZED**

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

7.3

11.1

10

1

2

1

09/28/06

09/29/06

Analysis Desc: SW846 6010B Analysis, Total Waters

53 mg/L

RESULTS UNITS

0.21 mg/L

<10 mg/L

09/21/06

BY

da

pad

pad

pad

at

at

Iron **WET CHEMISTRY**

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions Chloride

Sulfate (as SO4)

Alkalinity, Total

Analysis Desc: EPA 310.1, Alkalinity, Total

<10 mg/L 8.9 mg/L

53 mg/L

1.0

2

09/25/06 09/25/06

09/22/06

at

10/03/06

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481

Page 18 of 67

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-18

Date Collected: 09/20/06 12:50

09/21/06

Matrix: Water

ANALYZED

ΒY

da

Sample ID:

CGB2 ALT (CELL)

Date Received:

RDL

0.20

10

10

1.0

10

09/21/06 10:25

DILUTION PREPARED

QUAL MCL BY

PARAMETERS
INORGANICS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

66 mg/L

0.25 mg/L

<10 mg/L

RESULTS UNITS

7.3

09/28/06

09/29/06

Analysis Desc: SW846 6010B Analysis, Total Waters

11.1

pad

pad

pad

WET CHEMISTRY

Iron

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Analysis Desc: EPA 310.1, Alkalinity, Total

Chloride Sulfate (as SO4)

Aikalinity, Total

13 mg/L 20 mg/L

66 mg/L

2 2

1

10

1

09/25/06 09/25/06

09/22/06

at at

10/06/06 at

Page 19 of 67 Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-19

Date Collected: 09/20/06 13:20

Matrix: Water

ANALYZED

Sample ID:

COMMUNITY SAILING DOCK

Date Received:

09/21/06 10:25

DILUTION PREPARED

MCL. BY QUAL

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

RDL

09/28/06

09/29/06

09/22/06

09/25/06

09/25/06

59 mg/L

RESULTS UNITS

7.3

11.1

1

2

2

BY

da

pad

Iron

Analysis Desc: SW846 6010B Analysis, Total Waters

10 0.21 mg/L 0.20 09/21/06

pad

pad

at

at

WET CHEMISTRY

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

<10 mg/L

Analysis Desc: EPA 300.0R2.1, Anions Chloride

<10 mg/L Sulfate (as SO4) 11 mg/L

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

54 mg/L

10

10

10

1.0

1

10/06/06 at

Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-20

Date Collected: 09/20/06 15:05

Matrix: Water

09/23/06 11:30 Date Received: Sample ID: CGA1 (CELL) DILUTION PREPARED ΒY **ANALYZED** BY QUAL MCL **RESULTS UNITS** RDL **PARAMETERS INORGANICS** Analysis Desc: SM18-2340B, Hardness 11.1 09/28/06 7.3 Hardness (as CaCO3) 90 mg/L pad Analysis Desc: SW846 6010B Analysis, Total Waters 10 Iron 0.37 mg/L 0.20 09/25/06 da 09/28/06 pad **WET CHEMISTRY** Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/26/06 Total Suspended Solids lc <10 mg/L 10 Analysis Desc: EPA 300.0R2.1, Anions Chloride 19 mg/L 10 2 09/26/06 at Sulfate (as SO4) 28 mg/L 1.0 2 09/26/06 at Analysis Desc: EPA 310.1, Alkalinity, Total Alkalinity, Total 86 mg/L 10 1 10/06/06 at

Report ID: 13761 - 618481 Page 21 of 67

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-21

Date Collected:

09/20/06 15:35

Matrix: Water

09/28/06

09/26/06

pad

at

Sample ID:

BONG BRIDGE CELL

Date Received:

09/23/06 11:30

11.1

2

QUAL **DILUTION PREPARED** BY **ANALYZED** ΒY MCL **PARAMETERS RESULTS UNITS** RDL **INORGANICS** Analysis Desc: SM18-2340B, Hardness

7.3

Analysis Desc: SW846 6010B Analysis, Total Waters

Iron 0.62 mg/L 0.20 10 09/25/06 da 09/28/06 pad

93 mg/L

20 mg/L

WET CHEMISTRY

Sulfate (as SO4)

Hardness (as CaCO3)

Analysis Desc: EPA 160.2, Total Suspended Solids 1 10 09/26/06 Total Suspended Solids <10 mg/L lc Analysis Desc: EPA 300.0R2.1, Anions Chloride 15 mg/L 10 2 09/26/06 at

1.0

Analysis Desc: EPA 310.1, Alkalinity, Total

1 10/06/06 Alkalinity, Total 86 mg/L 10 at

CERTIFICATE OF ANALYSIS

Page 22 of 67 Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID:

DULUTH CORROSION / 9201-044

Trace ID:

GJ212-22

Date Collected: 09/20/06 16:05

Matrix: Water

ANALYZED

BY

da

Sample ID:

CGCI (CELL)

Date Received: 09/23/06 11:30

RDL

0.20

10

10

1.0

DILUTION PREPARED

BY QUAL MCL

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Analysis Desc: SW846 6010B Analysis, Total Waters

Analysis Desc: EPA 160.2, Total Suspended Solids

Hardness (as CaCO3)

WET CHEMISTRY

Chloride

Sulfate (as SO4)

Total Suspended Solids

98 mg/L

0.80 mg/L

<10 mg/L

RESULTS UNITS

11.1 7.3

10

1

2

2

09/28/06

pad

09/28/06

pad

lc

09/26/06

at

at

09/26/06 09/26/06

Analysis Desc: EPA 310.1, Alkalinity, Total

13 mg/L

15 mg/L

10

1

10/06/06

at

Alkalinity, Total

Analysis Desc: EPA 300.0R2.1, Anions

89 mg/L

09/25/06

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481

fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID: GJ212-23		Date C	ollected:	09/20/06 16:45		Matrix: Water			
Sample ID: HALLETT 5		Date R	eceived:	09/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTIO	N PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hardness									
Hardness (as CaCO3)	91 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analysis, T	otal Waters				,				
Iron	0.21 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Suspend	ed Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, Anions									
Chloride	21 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	30 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalinity, Tota									
Alkalinity, Total	87 mg/L	10	1			10/06/06	at		

CERTIFICATE OF ANALYSIS

Page 24 of 67 Report ID: 13761 - 618481

tall-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

DULUTH CORROSION / 9201-044 Client Project ID:

Trace ID:

GJ212-24

Date Collected: 09/20/06 17:20

RDL

0.20

10

10

1.0

09/25/06

Matrix: Water

ANALYZED

09/28/06

09/26/06

09/26/06

09/26/06

Sample ID:

LAKEHEAD BOAT BASIN #1

RESULTS UNITS

<0.20 mg/L

<10 mg/L

<10 mg/L

6.4 mg/L

Date Received: 09/23/06 11:30

DILUTION PREPARED

MCL QUAL BY

pad

lc

at

at

at

PARAMETERS INORGANICS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

7.3 48 mg/L

11.1 09/28/06

da

Analysis Desc: SW846 6010B Analysis, Total Waters

10

1

2

2

1

Iron **WET CHEMISTRY**

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids Analysis Desc: EPA 300.0R2.1, Anions

Chloride

Sulfate (as SO4) Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

48 mg/L

10

10/06/06

CERTIFICATE OF ANALYSIS

Page 25 of 67 Report ID: 13761 - 618481

phone toll-free

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-25

Date Collected: 09/21/06 08:10

Matrix: Water

ANALYZED

Sample ID:

DE 9

Date Received:

09/23/06 11:30

INORGANICS

PARAMETERS

Analysis Desc: SM18-2340B, Hardness

, in any old D	.	011110		· • • ,	 7
Hardness	(as	CaCO3	11		

11.1

10

1

2

2

DILUTION PREPARED

09/28/06

BY

BY

MCL

QUAL

Hardness (as CaCO3)

46 mg/L

<0.20 mg/L

<10 mg/L

<10 mg/L

4.1 mg/L

RESULTS UNITS

7.3

0.20

10

10

1.0

RDL

09/25/06

09/28/06 da

pad

pad

lc

at

at

WET CHEMISTRY

Iron

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Chloride Sulfate (as SO4)

Analysis Desc: SW846 6010B Analysis, Total Waters

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

46 mg/L

10

1

09/26/06 09/26/06

09/26/06

10/06/06 at

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Report ID: 13761 - 618481

Page 26 of 67

phone toll-free

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Luboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

RDL

0.20

10

10

1.0

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-26

Date Collected: 09/21/06 08:40

Matrix: Water

Sample ID: **DE 10**

Date Received: 09/23/06 11:30

DILUTION PREPARED

QUAL MCL **ANALYZED** BY

INORGANICS

PARAMETERS

7.3 45 mg/L

09/28/06

Analysis Desc: SM18-2340B, Hardness

11.1

pad

Iron

Hardness (as CaCO3)

Analysis Desc: SW846 6010B Analysis, Total Waters

<0.20 mg/L

RESULTS UNITS

10

1

2

2

09/25/06 da

09/28/06

lc

at

at

at

pad

WET CHEMISTRY

Analysis Desc: EPA 160.2, Total Suspended Solids <10 mg/L Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Chloride Sulfate (as SO4)

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

45 mg/L

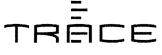
<10 mg/L

4.3 mg/L

10

1

09/26/06


09/26/06

09/26/06

10/06/06

CERTIFICATE OF ANALYSIS

Page 27 of 67 Report ID: 13761 - 618481

phone fax

231.773.5998 tall-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-27

Date Collected: 09/21/06 09:05

Matrix: Water

Date Received: 09/23/06 11:30

Sample ID: DE 8		Date R	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Har	dness								
Hardness (as CaCO3)	45 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B An	alysis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total S	Suspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, A	nions								
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	4.4 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalin	nity, Total	·- ·							
Alkalinity, Total	47 mg/L	10	1			10/06/06	at		

CERTIFICATE OF ANALYSIS

Page 28 of 67 Report ID: 13761 - 618481

phone fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

0 1040 00

Date Collected: 09/21/06 09:40

Matrix: Water

DE 4		Date Re	eceived: 09	9/23/06 11:30					
RS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
s									
c: SM18-2340B, Hardr	ess			•					
s CaCO3)	46 mg/L	7.3	11.1			09/28/06	pad		
c: SW846 6010B Analy	rsis, Total Waters	1.6.00.01							
	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
STRY						<u>.</u>			
c: EPA 160.2, Total Su	spended Solids								
ded Solids	<10 mg/L	10	1			09/26/06	lc		
c: EPA 300.0R2.1, Anio	ons								
	<10 mg/L	10	2			09/26/06	at		
604)	5.2 mg/L	1.0	2			09/26/06	at		
c: EPA 310.1, Alkalinity	, Total				***				
otal	48 mg/L	10	1			10/06/06	at		
	SS	RESULTS UNITS 3 3 5: SM18-2340B, Hardness 5: CaCO3) 46 mg/L 5: SW846 6010B Analysis, Total Waters	RESULTS UNITS RDL RESULTS UNITS	RESULTS UNITS RDL DILUTION RE	RESULTS UNITS RDL DILUTION PREPARED 11.1 RESULTS UNITS RDL DILUTION PREPARED RESULTS UNITS RDL DILUTION PREPARED 11.1 RESULTS UNITS RDL DILUTI	RESULTS UNITS RDL DILUTION PREPARED BY 11.1 RESULTS UNITS RDL DILUTION PREPARED BY 11.1	RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED S S: SM18-2340B, Hardness S: CaCO3) 46 mg/L 7.3 11.1 09/28/06 S: SW846 6010B Analysis, Total Waters www.commons/mainles/decommons/www.cachen.com/mainles/decommons/<a #"="" href="https://www</td><td>RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY S: SM18-2340B, Hardness S: CaCO3) 46 mg/L 7.3 11.1 09/28/06 pad S: SW846 6010B Analysis, Total Waters</td><td>RESULTS UNITS RDL DILUTION PREPARED BY ANALYZED BY QUAL S C: SM18-2340B, Hardness S CaCO3) 46 mg/L 7.3 11.1 09/28/06 pad C: SW846 6010B Analysis, Total Waters < 0.20 mg/L 0.20 10 09/25/06 da 09/28/06 pad STRY C: EPA 160.2, Total Suspended Solids ded Solids < 10 mg/L 10 1 09/26/06 lc C: EPA 300.0R2.1, Anions < 10 mg/L 10 2 09/26/06 at 09/26/06 at C: EPA 310.1, Alkalinity, Total		

Page 29 of 67 Report ID: 13761 - 618481

fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-29

Date Collected: 09/21/06 10:05

Matrix: Water

Hade ID. GOZ IZ-ZS									
Sample ID: DE 7		Date R	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	ВҮ	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Har	dness								
Hardness (as CaCO3)	46 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Ana	alysis, Total Waters	1,00	·						
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total S	suspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, An	nions								
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	4.7 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalin	ity, Total								
Alkalinity, Total	47 mg/L	10	1			10/06/06	at		

CERTIFICATE OF ANALYSIS

fax

phone 231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-30

Date Collected: 09/21/06 10:35

Matrix: Water

Sample ID: DE 6		Date R	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS								****	
Analysis Desc: SM18-2340B, Hardness	i								
Hardness (as CaCO3)	48 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analysis,	Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Suspen	nded Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, Anions									
Chloride	<10 mg/L	10	5			09/26/06	at		
Sulfate (as SO4)	5.0 mg/L	1.0	5			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalinity, To	tal								
Alkalinity, Total	47 mg/L	10	1			10/06/06	at		

Page 31 of 67 Report ID: 13761 - 618481

phone toll-free

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-31

Date Collected: 09/21/06 11:00

Matrix: Water

ANALYZED

Sample ID:

DE 1

RDL

Date Received: 09/23/06 11:30

DILUTION PREPARED

QUAL MCL BY

PARAMETERS INORGANICS

alveis Desc: SM18-2340B Hardness

Anaiysis	Desc:	SIVI 10-2340D,	naruness
		0-000	

48 mg/L

11.1

1

2

2

09/28/06

Hardness (as CaCO3)

7.3

pad

ΒY

Iron

Analysis Desc: SW846 6010B Analysis, Total Waters <0.20 mg/L

RESULTS UNITS

10 0.20

09/25/06 da 09/28/06

pad

lc

at

at

at

WET CHEMISTRY

Analysis Desc: EPA 160.2, Total Suspended Solids

Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Chloride Sulfate (as SO4)

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

46 mg/L

<10 mg/L

<10 mg/L

4.1 mg/L

10

10

10

1.0

1

09/26/06

09/26/06

09/26/06

10/06/06

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Page 32 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID: GJ212-32 Date Collected: 09/21/06 11:20

Matrix: Water

Sample ID: DE 2		Date R	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS						15.07			
Analysis Desc: SM18-2340B, Hardnes	SS								
Hardness (as CaCO3)	45 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analysis	s, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Susp	ended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, Anion	s	 -	-						-
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	4.1 mg/L	1.0	2			09/26/06	at	·-	
Analysis Desc: EPA 310.1, Alkalinity,	Total				· · · · ·				
Alkalinity, Total	46 mg/L	10	1			10/06/06	at		

CERTIFICATE OF ANALYSIS

Page 33 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-33

Date Collected: 09/21/06 11:40

Matrix: Water

Date Received: 09/23/06 11:30

Sample ID: DE 3		Date Re	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hard	Iness								
Hardness (as CaCO3)	46 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Ana	lysis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Sc	uspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, An	ions			- No. 15-h					
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	4.2 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalini	ty, Total								
Alkalinity, Total	46 mg/L	10	1			10/06/06	at		

Page 34 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 fax 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-34

Date Collected: 09/21/06 12:05

Matrix: Water

Sample ID:

Date Received: 09/23/06 11:30

Sample ID: DE 5		Date R	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Har	rdness						· · · · · · ·		
Hardness (as CaCO3)	47 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B An	alysis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total S	Suspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, A	nions	,							
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	5.5 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalin	ity, Total				*****	•			
Alkalinity, Total	48 mg/L	10	1			10/06/06	at		

CERTIFICATE OF ANALYSIS

phone fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

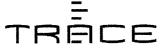
ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-35


Date Collected: 09/21/06 13:45

Matrix: Water

Date Received: 09/23/06 11:30

Sample ID: SE 6		Date Re	eceived: 09	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									· · · · · · · · · · · · · · · · · · ·
Analysis Desc: SM18-2340B, Hai	rdness								
Hardness (as CaCO3)	53 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B An	alysis, Total Waters	· · · ·							
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total S	Suspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	lc		
Analysis Desc: EPA 300.0R2.1, A	nions			J.,	-				
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	9.5 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalir	nity, Total								
Alkalinity, Total	53 mg/L	10	1			10/06/06	at		

Page 36 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 fax

231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-36

Date Collected: 09/21/06 14:10

Matrix: Water

Sample ID: SE 5		Date R	eceived: 0	9/23/06 11:30					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hardnes	SS	<u>.</u>							
Hardness (as CaCO3)	48 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analysis	s, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Suspe	ended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc: EPA 300.0R2.1, Anions	5								
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	6.0 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalinity, T	otal	·						•	
Alkalinity, Total	49 mg/L	10	1			10/09/06	at		

Page 37 of 67 Report ID: 13761 - 618481

phone

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Luboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

Alkalinity, Total

GJ212-37

Date Collected: 09/21/06 14:45

Matrix: Water

10/09/06

Sample ID: SE 8									
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCI
INORGANICS									
Analysis Desc: SM18-2340B, Hardn	ess			•					
Hardness (as CaCO3)	47 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analy	rsis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/25/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Sus	spended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc: EPA 300.0R2.1, Anic	ons								
Chloride	<10 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	5.6 mg/L	1.0	2			09/26/06	at		

10

49 mg/L

Page 38 of 67 Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537

11 mg/L

14 mg/L

110 mg/L

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-38

Date Collected: 09/21/06 16:00

Matrix: Water

09/26/06

09/26/06

10/09/06

at

at

at

Sample ID:

Chloride

Sulfate (as SO4)

Alkalinity, Total

Analysis Desc: EPA 310.1, Alkalinity, Total

OLIVER BRIDGE

Date Received:

09/23/06 11:30

2

2

1

DILUTION PREPARED RDL BY ANALYZED BY QUAL MCL **RESULTS UNITS PARAMETERS INORGANICS** Analysis Desc: SM18-2340B, Hardness 11.1 09/28/06 7.3 pad 110 mg/L Hardness (as CaCO3) Analysis Desc: SW846 6010B Analysis, Total Waters 10 09/25/06 09/28/06 pad Iron 0.23 mg/L 0.20 da **WET CHEMISTRY** Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/26/06 pad Total Suspended Solids <10 mg/L 10 Analysis Desc: EPA 300.0R2.1, Anions

10

1.0

10

CERTIFICATE OF ANALYSIS

phone toll-free

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-39

Date Collected: 09/22/06 08:15

Matrix: Water

Sample ID:

HALLETT 7

Date Received:

09/23/06 11:30

09/25/06

RESULTS UNITS RDL DILUTION PREPARED BY **ANALYZED** BY QUAL MCL **PARAMETERS**

INORGANICS

Analysis Desc: SM18-2340B, Hardness

Analysis Desc: SW846 6010B Analysis, Total Waters

94 mg/L

da

Page 40 of 67

Hardness (as CaCO3)

11.1 7.3

0.20

09/28/06

pad

09/28/06 pad

WET CHEMISTRY

Analysis Desc: EPA 160.2, Total Suspended Solids

<10 mg/L **Total Suspended Solids**

Analysis Desc: EPA 300.0R2.1, Anions

Chloride Sulfate (as SO4) 12 mg/L 14 mg/L

0.65 mg/L

10 1.0

10

2 2

10

1

09/26/06 09/26/06

09/26/06

at at

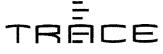
pad

Analysis Desc: EPA 310.1, Alkalinity, Total

Alkalinity, Total

92 mg/L

10


1

10/09/06 at

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Report ID: 13761 - 618481

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-40

Date Collected: 09/22/06 08:45

09/25/06

Matrix: Water

ANALYZED

Sample ID:

SPIRIT LAKE MARINA

Date Received: 09/23/06 11:30

RDL

DILUTION PREPARED

MCL QUAL BY

INO	RG	ANI	CS

PARAMETERS

Analysis Desc: SM18-2340B, Hardness

Hardness (as CaCO3)

100 mg/L

0.36 mg/L

RESULTS UNITS

7.3 11.1 09/28/06

BY

Analysis Desc: SW846 6010B Analysis, Total Waters

0.20

10

10

1.0

da

pad

pad

pad

WET CHEMISTRY

Iron

Analysis Desc: EPA 160.2, Total Suspended Solids

<10 mg/L Total Suspended Solids

Analysis Desc: EPA 300.0R2.1, Anions

Chloride Sulfate (as SO4)

11 mg/L

Analysis Desc: EPA 310.1, Alkalinity, Total Alkalinity, Total

99 mg/L

11 mg/L

10

1

10

1

2

2

09/26/06

09/28/06

09/26/06 at

09/26/06 at

10/09/06 at

Page 41 of 67 Report ID: 13761 - 618481

phone toll-free

231.773.5998 800.733.5998 231.773.6537

47 mg/L

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

Alkalinity, Total

GJ212-41

Date Collected: 09/24/06 09:45

Matrix: Water

10/09/06

at

Date Received: 09/26/06 10:27 **TWO HARBORS** Sample ID: **RESULTS UNITS** RDL DILUTION PREPARED BY **ANALYZED** BY QUAL MCL **PARAMETERS INORGANICS** Analysis Desc: SM18-2340B, Hardness 11.1 09/28/06 Hardness (as CaCO3) 81 mg/L 7.3 pad Analysis Desc: SW846 6010B Analysis, Total Waters 0.37 mg/L 10 09/26/06 0.20 da 09/28/06 pad **WET CHEMISTRY** Analysis Desc: EPA 160.2, Total Suspended Solids 1 09/26/06 <10 mg/L 10 Total Suspended Solids pad Analysis Desc: EPA 300.0R2.1, Anions 5 Chloride <10 mg/L 10 09/26/06 at Sulfate (as SO4) 4.1 mg/L 1.0 5 09/26/06 at Analysis Desc: EPA 310.1, Alkalinity, Total

10

1

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 42 of 67

231.773.5998 toll-free 800.733.5998 fax

231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Date Collected: 09/24/06 11:50 Matrix: Water Trace ID: GJ212-42

Hace ID.	GUZ 12-42									
Sample ID:	SE 3		Date Re	eceived: 09	9/26/06 10:27					
PARAMETER	RS	RESULTS UNITS	RDL.	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANIC	S									
Analysis Des	c: SM18-2340B, Hardnes	SS								
Hardness (as	s CaCO3)	61 mg/L	7.3	11.1			09/28/06	pad		
Analysis Des	c: SW846 6010B Analysi	s, Total Waters						_		
Iron		0.42 mg/L	0.20	10	09/26/06	da	09/28/06	pad		
WET CHEMIS	STRY									
Analysis Des	c: EPA 160.2, Total Susp	ended Solids								
Total Suspen	ded Solids	<10 mg/L	10	1			09/26/06	pad 		
Analysis Des	c: EPA 300.0R2.1, Anion	s								
Chloride		<10 mg/L	10	2			09/26/06	at		
Sulfate (as S	SO4)	6.8 mg/L	1.0	2			09/26/06	at		
Analysis Des	c: EPA 310.1, Alkalinity,	Total				-				
Alkalinity, To	otal	52 mg/L	10	1			10/11/06	at		

CERTIFICATE OF ANALYSIS

Page 43 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444 2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-43

Date Collected: 09/24/06 12:20

Matrix: Water

Sample ID: DSPA BERTH 4		Date R	eceived: 0	9/26/06 10:27					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hardne	ess				•				
Hardness (as CaCO3)	66 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Analys	is, Total Waters		······································	, , , , , , , , , , , , , , , , , , , 					
Iron	0.21 mg/L	0.20	10	09/26/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Susp	pended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc: EPA 300.0R2.1, Anior	ns					· · · · · · · · · · · · · · · · · · ·			
Chloride	14 mg/L	10	2			09/26/06	at		
Sulfate (as SO4)	21 mg/L	1.0	2			09/26/06	at		
Analysis Desc: EPA 310.1, Alkalinity,	Total								
Alkalinity, Total	69 mg/L	10	1			10/11/06	at		

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 44 of 67

phone fax

phone 231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-44

Date Collected: 09/24/06 12:50

Matrix: Water

Sample ID: DSPA BERTH 1		Date R	eceived: 09	9/26/06 10:27					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hard	Iness								
Hardness (as CaCO3)	61 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Ana	lysis, Total Waters								
Iron	<0.20 mg/L	0.20	10	09/26/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total Su	uspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc: EPA 300.0R2.1, An	ions								
Chloride	27 mg/L	10	5			09/27/06	at		
Sulfate (as SO4)	16 mg/L	1.0	2			09/27/06	at		
Analysis Desc: EPA 310.1, Alkalinit	ty, Total								
Alkalinity, Total	60 mg/L	10	1			10/11/06	at		

Page 45 of 67 Report ID: 13761 - 618481

phone toll-free

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:

GJ212-45

Date Collected: 09/24/06 13:25

RDL

0.20

10

10

1.0

Matrix: Water

ANALYZED

Sample ID:

ERIE PIER 1

Date Received: 09/26/06 10:27

DILUTION PREPARED

BY

PARAMETERS INORGANICS

WET CHEMISTRY

Total Suspended Solids

Iron

Analysis Desc: SM18-2340B, Hardness

Analysis Desc: SW846 6010B Analysis, Total Waters

Analysis Desc: EPA 160.2, Total Suspended Solids

Hardness (as CaCO3)

88 mg/L

0.63 mg/L

<10 mg/L

17 mg/L

22 mg/L

RESULTS UNITS

11.1 7.3

10

1

2

2

da

09/26/06

09/28/06

QUAL

MCL

pad

09/28/06

pad

09/26/06

pad

at

at

at

09/27/06 09/27/06

Analysis Desc: EPA 310.1, Alkalinity, Total

Analysis Desc: EPA 300.0R2.1, Anions

Alkalinity, Total

Sulfate (as SO4)

Chloride

89 mg/L

10

1

10/11/06

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Trace Analytical Laboratories, Inc.

Report ID: 13761 - 618481

Page 46 of 67

phone 231.773.5998 toll-free 800.733.5998 fax

231.773.6537

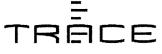
Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Trace ID:


GJ212-46

Date Collected: 09/24/06 13:45

Matrix: Water

Sample ID: ERIE PIER 2		Date R	eceived: 09	9/26/06 10:27					
PARAMETERS	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS									
Analysis Desc: SM18-2340B, Hard	dness								
Hardness (as CaCO3)	100 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc: SW846 6010B Ana	alysis, Total Waters		*****						
Iron	0.71 mg/L	0.20	10	09/26/06	da	09/28/06	pad		
WET CHEMISTRY									
Analysis Desc: EPA 160.2, Total S	Suspended Solids								
Total Suspended Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc: EPA 300.0R2.1, An	nions						_	-	
Chloride	16 mg/L	10	2			09/27/06	at		
Sulfate (as SO4)	21 mg/L	1.0	2			09/27/06	at		
Analysis Desc: EPA 310.1, Alkalin	ity, Total			····					
Alkalinity, Total	89 mg/L	10	1			10/11/06	at		

Page 47 of 67 Report ID: 13761 - 618481

phone 231.773.5998 toll-free 800.733.5998 fax

231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

ANALYTICAL RESULTS

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

Date Collected: 09/24/06 14:20

Matrix: Water

Trace ID:	GJ212-47		Date Co	ollected: 09	9/24/06 14:20		Matrix: Water			
Sample ID:	MIDWEST ENERGY		Date Re	eceived: 09	9/26/06 10:27					
PARAMETERS	S	RESULTS UNITS	RDL	DILUTION	PREPARED	BY	ANALYZED	BY	QUAL	MCL
INORGANICS	3									
Analysis Desc	: SM18-2340B, Hardness									
Hardness (as	CaCO3)	84 mg/L	7.3	11.1			09/28/06	pad		
Analysis Desc	: SW846 6010B Analysis,	Total Waters								
Iron		0.43 mg/L	0.20	10	09/26/06	da	09/28/06	pad		
WET CHEMIS	TRY									
Analysis Desc:	: EPA 160.2, Total Suspen	ded Solids								
Total Suspende	ed Solids	<10 mg/L	10	1			09/26/06	pad		
Analysis Desc:	: EPA 300.0R2.1, Anions									
Chloride		21 mg/L	10	5			09/27/06	at		
Sulfate (as SC	04)	32 mg/L	1.0	5			09/27/06	at		
Analysis Desc:	: EPA 310.1, Alkalinity, Tot	al								
Alkalinity, Tot	al	93 mg/L	10	1			10/11/06	at		

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

DIG/3892

Analysis Method: SW846 6010B

QC Batch Method:

SW846 3015

GJ212-01

GJ212-02

GJ212-03

GJ212-04

GJ212-05

Associated Lab Samples:

GJ205-01 GJ212-06 GJ212-15

GJ212-07 GJ212-16 GJ212-09 GJ212-17 GJ212-12 GJ212-18 GJ212-13 GJ212-19 GJ212-14

METHOD BLANK: 97669

Parameter

Units

Blank Result Reporting Limit

Qualifiers

Iron

mg/L

< 0.20

0.20

LABORATORY CONTROL SAMPLE:

97670

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Iron	mg/L	8.9	9.0	102	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 97671

97672

Original: GJ212-09

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Iron	mg/L	0.29	8.9	9.1	9.1	99	99	75-125	0	20	

CERTIFICATE OF ANALYSIS

Page 49 of 67 Report ID: 13761 - 618481

phone fax

231.773.5998 toll-free 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8264

Analysis Method: EPA 160.2

QC Batch Method:

EPA 160.2

GJ212-01

GJ212-02

GJ212-03

GJ212-04

GJ212-05 GJ212-14 GJ212-06

Associated Lab Samples:

GJ212-07 GJ212-16

GJ212-09 GJ212-17 GJ212-12 GJ212-18 GJ212-13 GJ212-19 GJ212-15

METHOD BLANK: 97741

Units Parameter

Result

Reporting Limit

Qualifiers

Total Suspended Solids

mg/L

<10

Blank

10

LABORATORY CONTROL SAMPLE:

97742

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Suspended Solids	mg/L	50	48	96	85-115	

SAMPLE DUPLICATE: 97886

Original: GJ212-09

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
Total Suspended Solids	mg/L		<10	0	20	

CERTIFICATE OF ANALYSIS

Page 50 of 67 Report ID: 13761 - 618481

fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8272

Analysis Method: EPA 300.0

QC Batch Method:

EPA 300.0

GJ212-09

GJ212-17

GJ212-03 GJ212-02

GJ212-04

GJ212-05 GJ212-14 GJ212-06

Associated Lab Samples:

GJ212-01

GJ212-07 GJ212-16 GJ212-12 GJ212-18 GJ212-13 GJ212-19 GJ212-15

METHOD BLANK: 97840

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Chloride	mg/L	<10	10		
Sulfate (as SO4)	mg/L	<1.0	1.0		

LABORATORY CONTROL SAMPLE:

97841

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	1	<10	108	90-110	
Sulfate (as SO4)	mg/L	2.5	2.7	109	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 97994

97995

Original: GJ212-09

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Chloride	mg/L	21	15	39	38	117	111	80-120	5.3	20	

CERTIFICATE OF ANALYSIS

Page 51 of 67 Report ID: 13761 - 618481

the science of compliance

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

GJ212-22

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

Parameter

Iron

DIG/3902

Analysis Method: SW846 6010B

QC Batch Method:

SW846 3015

Associated Lab Samples:

GJ212-21 GJ212-20 GJ212-26

GJ212-27

GJ212-28 GJ212-34 GJ212-23

GJ212-24

GJ212-25

GJ212-32 GJ212-38 GJ212-33 GJ212-39 GJ212-29 GJ212-35 GJ212-30 GJ212-36 GJ212-31 GJ212-37

METHOD BLANK: 97935

Units

Blank Result

< 0.20

Reporting Limit

Qualifiers

mg/L

0.20

LABORATORY CONTROL SAMPLE:

97936

% Rec Spike LCS LCS Qualifiers Limits Units Conc. Result % Rec Parameter 9.1 103 80-120 mg/L 8.9 Iron

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 97937

97938

Original: GJ212-30

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	Max RPD RPD	Qualifiers
Iron	mg/L	0	8.9	9.0	9.1	102	103	75-125	0.98 20	

CERTIFICATE OF ANALYSIS

Page 52 of 67 Report ID: 13761 - 618481

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

DIG/3903

Analysis Method: SW846 6010B

QC Batch Method:

SW846 3015

Associated Lab Samples:

GJ242-02 GJ242-09 GJ242-04 GJ242-05 GJ242-10

GJ242-06

GJ242-07

GJ212-40 GJ242-08 GJ242-15

GJ242-16

GJ242-12 GJ242-18 GJ242-13 GJ242-19

GJ242-14

METHOD BLANK: 97948

Parameter

Blank Result

< 0.20

GJ242-17

Reporting Limit

Qualifiers

iron

mg/L

Units

0.20

LABORATORY CONTROL SAMPLE:

97949

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Iron	mg/L	8.9	8.8	98	80-120	

Page 53 of 67 Report ID: 13761 - 618481

toll-free fax

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444 2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8282

Analysis Method: EPA 160.2

QC Batch Method:

EPA 160.2

GJ212-20

GJ212-21

GJ212-23 GJ212-22

GJ212-24

GJ212-25

Associated Lab Samples:

GJ212-26 GJ212-32

GJ212-27 GJ212-33 GJ212-28 GJ212-29 GJ212-34 GJ212-35 GJ212-30 GJ235-01 GJ212-31 GJ237-01

GJ241-01

GJ250-01

METHOD BLANK: 97985

Parameter Units

Blank Result

<10

Reporting Limit

Qualifiers

Total Suspended Solids

mg/L

10

LABORATORY CONTROL SAMPLE:

97986

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Total Suspended Solids	mg/L	50	49	98	85-115	

SAMPLE DUPLICATE: 97987

Original: GJ250-01

Parameter	Units	Original Result	DUP Result	RPD	Max RPD	Qualifiers
Total Suspended Solids	mg/L		1000	4.9	20	

CERTIFICATE OF ANALYSIS

Page 54 of 67 Report ID: 13761 - 618481

phone toll-free fax 231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8285

Analysis Method: EPA 310.1

QC Batch Method:

EPA 310.1

Analysis Method. LFA 310

Associated Lab Samples:

GJ210-01 GJ210-09 GJ212-05 GJ210-04 GJ212-01 GJ212-07 GJ210-06 GJ212-02 GJ229-07 GJ210-07 GJ212-03 GJ229-08 GJ210-08 GJ212-04 GJ229-09

GJ235-01

GJ210-10 GJ212-06 GJ237-01

GJ210-02

METHOD BLANK: 98059

Parameter Units

Blank Result

<10

Reporting Limit

Qualifiers

Alkalinity, Total

mg/L

10

LABORATORY CONTROL SAMPLE:

98060

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Alkalinity, Total	mg/L	94	96	102	90-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98111

98112

Original: GJ212-01

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Alkalinity, Total	mg/L	66	94	160	160	98	99	78-130	1	24	

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 55 of 67

phone fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

Iron

Iron

DIG/3907

Analysis Method: SW846 6010B

QC Batch Method:

SW846 3015

GJ212-47

GJ212-41 Associated Lab Samples:

GJ212-42

mg/L

GJ212-43

GJ212-44

GJ212-45

GJ212-46

METHOD BLANK: 98072

Blank Reporting Result Limit Qualifiers Units Parameter < 0.20 0.20

LABORATORY CONTROL SAMPLE:

98073

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Iron	mg/L	8.9	8.6	97	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98074

mg/L

0.43

8.9

98075

Original: GJ212-41

98

75-125

20

97

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Iron	mg/L	0.37	8.9	9.1	9.2	98	99	75-125	1	20	
MATRIX SPIKE & MATRI	X SPIKE DUPLIC	ATE: 98076	3	9807	7	Origin	al: GJ212-	47			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers

9.1

9.1

CERTIFICATE OF ANALYSIS

Page 56 of 67 Report ID: 13761 - 618481

the science of compliance

phone toll-free fax

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8288

Analysis Method: EPA 300.0

QC Batch Method:

EPA 300.0

GJ212-20

GJ212-21

GJ212-22

Blank

GJ212-23

GJ212-24

GJ212-25

Associated Lab Samples:

GJ212-26 GJ212-32 GJ257-01

GJ212-27 GJ212-33 GJ258-01

GJ212-28 GJ212-34 GJ212-29 GJ212-35 GJ212-30 GJ212-36 GJ212-31 GJ252-01

METHOD BLANK: 98081

	·
Parameter	

Chloride
Sulfate (as SQ4)

Units Result <10 mg/L <1.0 mg/L

10 1.0

Reporting

Limit

Qualifiers

LABORATORY CONTROL SAMPLE:

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	1	<10	92	90-110	
Sulfate (as SO4)	mg/L	2.5	2.3	93	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98288

98289

Original: GJ212-30

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Chloride	mg/L	2.6	15	20	20	115	117	80-120	1.7	20	
Sulfate (as SO4)	mg/L	5	30	35	36	101	103	80-120	2	20	

CERTIFICATE OF ANALYSIS

Page 57 of 67 Report ID: 13761 - 618481

fax

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

GJ212-43

QC Batch:

WETC/8289

Analysis Method: EPA 300.0

QC Batch Method:

EPA 300.0

Associated Lab Samples: GJ212-37

GJ212-38 GJ212-44

21

32

mg/L

mg/L

15

30

GJ212-39 GJ212-45 GJ212-40 GJ212-46 GJ212-41 GJ212-47

GJ212-42

METHOD BLANK: 98083

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Chloride	mg/L	<10	10		
Sulfate (as SO4)	mg/L	<1.0	1.0		

LABORATORY CONTROL SAMPLE:

98084

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Chloride	mg/L	1	<10	110	90-110	
Sulfate (as SO4)	mg/L	2.5	2.6	103	90-110	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98293

98294

Original: GJ212-41

116

111

80-120

80-120

6.7

0

20

20

1

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Chloride	mg/L	1.5	15	20	19	120	115	80-120	4.3	20	
Sulfate (as SO4)	mg/L	4.1	30	35	34	103	100	80-120	3	20	
MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98295		9829	6	Origin	al: GJ212-	47					
	*****	Original	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Result	Result	% Rec	% Rec	Limit	RPD	RPD	Qualifiers

40

65

QC Notes

Sulfate (as SO4)

[1]

Chloride

The MS recovery was out of control. Because the MSD recovery and the RPD between the MS and the MSD were in control, no data require qualification.

38

66

124

111

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 58 of 67

phone toll-free

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8292

Analysis Method: EPA 160.2

QC Batch Method:

EPA 160.2

GJ012-04

GJ212-36 GJ212-42 GJ212-37 GJ212-43 GJ212-38 GJ212-44 GJ212-39

GJ212-40

Associated Lab Samples:

GJ212-41 GJ212-47

GJ249-01

GJ254RUSH-01

GJ212-45

GJ212-46

METHOD BLANK: 98091

Units Parameter

Blank Result Reporting Limit

Qualifiers

Total Suspended Solids

mg/L

<10

10

LABORATORY CONTROL SAMPLE:

98092

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Total Suspended Solids	mg/L	50	50	100	85-115	

SAMPLE DUPLICATE: 98248

Original: GJ212-41

		Original	DUP	<u> </u>	Max	
Parameter	Units	Result	Result	RPD	RPD	Qualifiers
Total Suspended Solids	mg/L		<10	0	20	

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 59 of 67

the science of compliance

phone 231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID:

DULUTH CORROSION / 9201-044

fax

QC Batch:

META/8140

Analysis Method: SM18-2340 B

QC Batch Method:

SM18-2340 B

Associated Lab Samples:

GJ212-02

GJ212-03

GJ212-04 GJ212-13 GJ212-05 GJ212-14 GJ212-06

GJ212-01 GJ212-07 GJ212-16

GJ212-09 GJ212-17 GJ212-12 GJ212-18

GJ212-19

GJ212-15

METHOD BLANK: 98397

Parameter

Units

Reporting Limit

Qualifiers

Hardness (as CaCO3)

mg/L

Units

mg/L

53

Original

Result

82

Units

mg/L

<2.0

Blank

Result

2.0

LABORATORY CONTROL SAMPLE:

98398

Paramete	er
Hardness	(as CaCO3)

Spike Conc. 66

LCS Result 59

LCS % Rec 90

% Rec Limits

80-120

Qualifiers

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98399

98400

Original: GJ212-09

Parameter	

MS MSD Spike Result Result Conc.

MS

% Rec

111

% Rec

Limit

75-125

Hardness (as CaCO3)

140 140

MSD % Rec

110

Max RPD RPD

20

0.9

CERTIFICATE OF ANALYSIS

Page 60 of 67 Report ID: 13761 - 618481

the science of compliance

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

META/8141

Analysis Method: SM18-2340 B

QC Batch Method:

SM18-2340 B

Associated Lab Samples:

GJ212-21

GJ212-22

GJ212-23

GJ212-24

GJ212-25

GJ212-20

GJ212-26 GJ212-27 GJ212-33 GJ212-32 GJ212-39 GJ212-38

GJ212-28 GJ212-34 GJ212-29 GJ212-35 GJ212-30 GJ212-36 GJ212-31 GJ212-37

METHOD BLANK: 98417

Parameter

Units

Blank Result

<2.0

Reporting Limit

Qualifiers

Hardness (as CaCO3)

mg/L

2.0

LABORATORY CONTROL SAMPLE:

98418

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Hardness (as CaCO3)	mg/L	66	62	94	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98419

98420

Original: GJ212-30

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Hardness (as CaCO3)	mg/L	48	53	110	110	113	116	75-125	2.6	20	

CERTIFICATE OF ANALYSIS

Page 61 of 67 Report ID: 13761 - 618481

phone

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

META/8142

Analysis Method: SM18-2340 B

QC Batch Method:

SM18-2340 B

Associated Lab Samples:

GJ212-40

METHOD BLANK: 98421

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Hardness (as CaCO3)	mg/L	<2.0	2.0		

LABORATORY CONTROL SAMPLE:

98422

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Hardness (as CaCO3)	mg/L	66	58	87	80-120	

CERTIFICATE OF ANALYSIS

Page 62 of 67 Report ID: 13761 - 618481

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

META/8143

Analysis Method: SM18-2340 B

QC Batch Method:

SM18-2340 B

GJ212-41

GJ212-47

Associated Lab Samples:

GJ212-42

GJ212-43

GJ212-44

GJ212-45

GJ212-46

METHOD BLANK: 98427

Hardness (as CaCO3)

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Hardness (as CaCO3)	mg/L	<2.0	2.0		

LABORATORY CONTROL SAMPLE:

98428

		Spike	LCS	LCS	% Rec	-
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Hardness (as CaCO3)	mg/L	66	57	85	80-120	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98423

mg/L

84

98424

Original: GJ212-41

105

75-125

2.8

20

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Hardness (as CaCO3)	mg/L	81	53	140	140	108	112	75-125	3.6	20	
MATRIX SPIKE & MATRIX S	PIKE DUPLIC	ATE: 98425	5	9842	:6	Origin	al: GJ212-	47			
Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers

140

108

140

53

CERTIFICATE OF ANALYSIS

Page 63 of 67 Report ID: 13761 - 618481

toll-free fax

231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8330

Analysis Method: EPA 310.1

EPA 310.1

QC Batch Method:

GJ212-09

GJ212-17

GJ296-03

GJ212-12

GJ212-14 GJ212-13

GJ212-15

GJ212-16

Associated Lab Samples:

GJ281-01 GJ296-04

GJ281-02 GJ296-05

GJ281-03 GJ296-01 GJ296-06 GJ296-07 GJ296-02 GJ296-08

METHOD BLANK: 98596

Parameter

Units

Blank Reporting Result Limit

Qualifiers

Alkalinity, Total

mg/L

<10

10

LABORATORY CONTROL SAMPLE:

98597

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Alkalinity, Total	mg/L	94	98	104	90-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 98721

98722

Original: GJ212-09

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Alkalinity, Total	mg/L	86	94	180	180	99	94	78-130	5.2	24	

CERTIFICATE OF ANALYSIS

Page 64 of 67 Report ID: 13761 - 618481

phone tall-free fax

231.773.5998 800.733.5998 231.773.6537

Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8368

Analysis Method: EPA 310.1

QC Batch Method:

EPA 310.1

Associated Lab Samples:

GJ212-18 GJ212-19 GJ212-20

Blank

GJ212-21

GJ212-22

GJ212-23

GJ212-24 GJ212-30 GJ212-25 GJ212-31

GJ212-26 GJ212-32 GJ212-27 GJ212-33 GJ212-28 GJ212-34 GJ212-29 GJ212-35

METHOD BLANK: 99161

Parameter Alkalinity, Total Units

Result mg/L <10

Reporting Limit 10

LCS

Qualifiers

LABORATORY CONTROL SAMPLE:

99162

Parameter

Units Alkalinity, Total mg/L

Result 94

LCS % Rec 99

% Rec Limits 90-122

Qualifiers

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 99222

99223

Spike

Conc.

94

Original: GJ212-30

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Alkalinity, Total	mg/L	47	94	150	140	109	97	78-130	12	24	

CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 65 of 67

phone

231.773.5998 toll-free 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8382

Analysis Method: EPA 310.1

QC Batch Method:

EPA 310.1

Associated Lab Samples:

GJ212-36

GJ212-37

GJ212-39

GJ212-40

GJ212-41

METHOD BLANK: 99263

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Alkalinity, Total	mg/L	<10	10		

GJ212-38

LABORATORY CONTROL SAMPLE:

99264

Parameter	Units	Spike Conc.	LCS Result	LCS % Rec	% Rec Limits	Qualifiers
Alkalinity, Total	mg/L	94	96	102	90-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 99278

99279

Original: GJ212-41

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Alkalinity, Total	mg/L	47	94	140	140	98	98	78-130	0	24	

CERTIFICATE OF ANALYSIS

Page 66 of 67 Report ID: 13761 - 618481

puone toll-free fax 231.773.5998 800.733.5998 231.773.6537 Trace Analytical Laboratories, Inc. 2241 Black Creek Road Muskegon, MI 49444-2673 info@trace-labs.com www.trace-labs.com

QUALITY CONTROL DATA

Trace Project ID: GJ212

Client Project ID: DULUTH CORROSION / 9201-044

QC Batch:

WETC/8406

GK098-01

Analysis Method: EPA 310.1

QC Batch Method:

EPA 310.1

Associated Lab Samples: GJ212-42

GJ212-43 GK100-01

GJ212-44

GJ212-45

GJ212-46

GJ212-47

METHOD BLANK: 99464

Parameter	Units	Blank Result	Reporting Limit	Qualifiers	
Alkalinity Total	ma/l	<10	10		

LABORATORY CONTROL SAMPLE:

99465

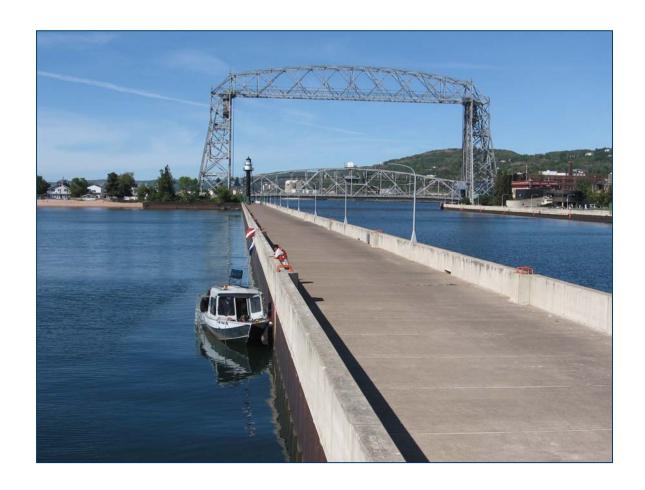
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Alkalinity, Total	mg/L	94	95	101	90-122	

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 99466

99467

Original: GJ212-47

Parameter	Units	Original Result	Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limit	RPD	Max RPD	Qualifiers
Alkalinity, Total	mg/L	93	94	180	180	95	94	78-130	1.1	24	


CERTIFICATE OF ANALYSIS

Report ID: 13761 - 618481 Page 67 of 67

Appendix E. AMI Corrosion Investigation Report

USACE CORROSION INVESTIGATION REPORT

Altech Environmental Services, Inc. 17350 W. Ten Mile Road, Suite 200 Southfield, Michigan 48075-2929 Phone: (248) 559-5500 Fax: (248) 559-5540

Altech@altechenvironmental.com

243 West Congress St., Suite 350 Detroit, Michigan 48226 Phone: (313) 963-9107 Fax: (313) 961-4631

1 EAST FIRST STREET, SUITE 403 DULUTH, MN 55802 PH: 218-727-1206 FAX: 218-727-3961 EMAIL: mail@amiengineers.com

USACE CORROSION INVESTIGATION REPORT

AMI #061036 DATE: AUG/SEPT, 2006

CONTENTS	PAGE
REPORT	3
PHOTO INDEX	8

Project

The Freshwater Corrosion in the Duluth / Superior Harbor project was initiated to further investigate the findings as published by a panel of experts in the ERDC/CERL SR-05-3 publication dated March 2005. The panel made recommendations on future testing necessary to narrow down the list of possible causes and to determine the full extent of the process around the entire harbor. The purpose of these underwater corrosion inspections was to investigate and document the corrosion on a wide variety of federal sheet pile structures throughout the harbor to determine the extent of the current corrosion on the existing sheet pile by the use of visual inspections and non destructive testing.

Scope of Work

The services required to complete the full investigation of the Duluth-Superior Harbor corrosion study for the federal structures included underwater visual engineering inspection, non destructive testing and complete documentation. All data was collected and reported in a manner consistent with the needs of the study being undertaken by the Army Corps of Engineers. From the plates provided in the scope of work, all of the USACE inspection points were located in the lower harbor region from the Bong Bridge to each harbor entry. The harbor entry work on both the Superior and Duluth side required very precise timing and coordination because of the significant boating activity in these areas and the abrupt change in weather affecting the sites.

AMI Consulting Engineers utilized our 22 foot Hewes Craft pilot house dive boat with a 200HP Honda motor and a surface supplied dive spread. The diver's surface supplied air was provided from a high pressure bank system to the diver's helmet. The primary helmet was a SL-27 with a band mask standby system. Bailout bottles were required for all dives. The diver's visuals inspections were documented utilizing an Outland color camera and light. This system was connected to a computer system capable of collecting and backing up all video data colleted. The non-destructive testing equipment utilized for the project was a Dakota Ultrasonics MX3 system with an underwater housing and transducer. The system was calibrated with a certified calibration step block, 4340 FE SN#06-1200, before every use to insure accuracy of the measurements. Our standard dive forms were utilized to collect the general data and then transferred to the USACE electronic forms as shown in the original scope of work.

AMI Consulting Engineers provided the following scope of services as directed by Altech Environmental Services and the local USACE representative, John Larson, during our pre-inspection meeting.

The basic scope of services finalized was as follows:

- Attend a meeting to organize investigation and set protocols with local USACE and other federal regulatory agencies.
- Prepare and submit dive plan policy and procedures, emergency action assessment and safety plan to USACE for formal approval before starting dive activities.

- Submit through formal channels a request for access to USCG structures and acquire written approval before proceeding with investigations.
- Prepare all pre/ post dive and field collection forms.
- Provide all dive equipment, cleaning equipment, digital video camera equipment,
 GPS and Non destructive testing equipment.
- Provide a four man dive team meeting all government and USACE regulations (EM385-1-1) and other local standards for commercial diving.
- Provide space and coordination for local USACE representative to monitor all activity.
- Properly mark above the waterline a permanent reference mark to IGLD with a grinder and record GPS location data in Latitude/Longitude format.
- Perform selected underwater inspections on all approved steel federal structure locations.
- Document conditions with digital video system and include marine growth notes, overall plate thickness measurements, 4 pit depth readings, 4 diameter readings and concentrations per elevation as shown on the USACE plates.

All schedules, modifications, collection methods and dive procedures were finalized with the local USACE representatives Mr. John Larson and Mr. Edward Parzych prior to starting the project. Mr. Edward Parzych was on site at all times monitoring our activity on behalf of the USACE. Local coordination with the USCG was done on a daily basis to provide notice to mariners and to insure the safety of the port structures.

Field Data Collection

The field collection of all data was conducted between the dates of August 17th 2006 and September 1, 2006. The project started with the inspections at the Superior Entry and ended at the Duluth Entry. To provide proper time management and minimize down times, the USCG beacons, Erie pier and the USACE vessel yard were inspected when inclement weather and shipping traffic did not allow us to work in the Duluth Entry.

Plate 2

The data collection locations for the Duluth Entry Structures DE1o, DE1i, DE2o, DE2i, SE3o, DE3i, DE4o, DE4i, DE5o, DE5i, DE6o, DE6i, DE7o, DE7i, DE8o, DE8i, DE9o, DE9i, DE10o and DE10i were collected as planned.

Many delays occurred due to shipping activity throughout the project. Although we used all possible means to make the boating community aware of our presence while working in the channel, we were often ignored by the local boating community. They had a lack of concern or understanding of our activity and the fact that the large wakes from their boats slam a moored vessel into the channel walls repetitively. Eventually the Coast Guard had to be notified to track down some gross offenders to educate them on what the dive flags, yellow strobes and notice to mariners actually mean. Eventually the normal daily traffic began to slow down and it made our activities much easier. At all

times, AMI was notified by the USACE and left the interior of the entry during the passing of all large cargo ships and research vessels. We attempted to work around the known schedule, but had to evacuate the channel seven times throughout the inspection process.

The last four sites along the South side of the Duluth entry provide some difficulty due to the change in the local weather pushing heavy rollers through the interior of the entry. Additionally, heavy weather wind days caused significant current to flow through the entry also providing difficult dive situations. These weather delays prevented us from performing inspections safely and caused a number of weather day delays to occur. We made every attempt to complete the project in a timely manner by working at the other sites as much as possible during the weather delays.

Plate 3

The data collection locations for the Vessel Yard Structure VY10, VY1i, VY2o and VY2i were collected as planned with very little delay. On the day of collection, the local USACE allowed a local television network to come into the yard area and observe the corrosion inspection process for public interest reporting.

Plate 4

The data collection locations for the Erie Pier Structure EP10 and EP20 were collected as planned with very little delay.

Plate 5

The data collection locations for the Coast Guard 1 Structures CGA10 and CGC10 were collected as planned with very little delay. Some current was present on the CGA10 structure due to the high winds on the day of inspection, but did not cause any significant delays.

Plate 6

The data collection locations for the Coast Guard 2 Structure CGB10 and CGB20 were found to be in error during the first dive at the CGB10 location. It was found that this structure as shown on the plate was all wood timber construction. Edward Parzych researched the error and directed the team to another circular Coast Guard Structure to the East of the one shown on Plate 7. Edward Parzych made the decision to only take one measurement at this new location due to the type of structure and do we matched the same sampling requirements as set forth on the other circular USCG structure locations. The structure was inspected on the West side as directed.

<u>Plate 7</u>

The data collection locations for the Superior Entry structures SE10, SE20, SE70, SE7i, SE80, SE8, SE90, Se100 and SE10i were collected as planned and with very little delay. No steel was present at the data collection locations specified to be at SE30, SE3i, SE40, SE50, SE60 and SE6i. Subsequently no data was collected.

Some difficulty was encountered in collecting data on the ice plate surface at SE10 and SE20 due to the currents exiting the channel and the amount of crib extending out

beyond the edge of the upper concrete entry piers preventing the boat from being tight up against the pier during the inspections. Other delays due to one large vessel coming through the channel and numerous charter boats ignoring the dive flags and strobe lights led to us calling the USCG to slow the charter boats down when we were present in the channel.

Plate 8

Data was collected according to plate 8 as presented in the final revision with the exception of the scribing as shown on plate 8. To save cost it was agreed by the Detroit and Local USACE offices to only mark the reference location mark above the water line. It was also found that during the collection of the data, a four inch square frame would not fit on the in pan of the flanges on the structures. Instead the six inch by six inch data frame was utilized to frame out the area of inspection and then the diver used that area to collect the data for all structures. Space in the in pans was limited, but all data was collected and documented on the non federal form and transferred to the USACE standard form for final presentation.

General Assessment of Data

In general the data collected was consistent with the structures that had been previously inspected in the other areas of the harbor. It's important to note that previously measured corrosion in other investigations researched was always reported from the current waterline or from the top of dock, not IGLD, which is the zero depth and reference for this study. With the water levels being much lower than what has been seen over the past years, the excessive pitting noted in the past is closer to the surface. This is very evident when you look at the high water marks on the structures around the harbor. Additionally the muscle population was thriving and present up higher on the sheet pile structures this year due to the mild ice season during the past winter.

The general conditions seen at most sites within the harbor are as follows:

0 to 0.5 feet below IGLD	Generally full material thickness remains with a low level of pitting.
0.5 to 3 feet below IGLD	Overall material thickness loss. High concentration and very deep ice cream scoop type pitting present.
4 to 10 feet below IGLD	Overall material thickness loss. High concentration with a transition from deep to shallow pitting. Large pitted areas tend to have numerous small 1/16 to 1/8 inch diameter pits within the large pitted area.
10 to 32 feet below IGLD	Minor material thickness loss, high to Moderate concentration but tends to reflect more of an overall etched surface than actual pitting. In most areas the mill scale has been removed only and a very low concentration of actual deep pits existed.

It has been found in this federal study that the major differences in the degree of corrosion and type occurred as we inspected closer to the Duluth entry and through the channels towards the lake water.

Below is a summary of the notable items beyond the general conditions on the different structures:

<u>Coast Guard Structures</u> – The Coast Guard structures were constructed with a 3/8" thick flat sheet piling. The circular cells were not coated originally and have significant overall corrosion and deep pitting from the IGLD mark down to -4 feet IGLD. The cells are currently perforated completely at the -1 to -2 feet IGLD. The diver could easily peel and twist off sections of the remaining steel from the cell with his hands. The interior of the cell which was visible at the time of inspection was filled with concrete.

<u>USACE Vessel Yard</u> – The Vessel yard sheet piling was very typical in nature, but due to the shallow area, a lot more silt and algae was present due to the somewhat stagnant nature of the slip.

<u>Duluth Entry</u> – The Duluth entry had typical corrosion characteristics for the DE5 and DE6 locations, but the degree of corrosion (penetration) was much less than other locations around the harbor. Locations DE1 to DE4 and DE7 to DE10 had significantly less corrosion concentration and penetration of pitting. Although corrosion was still present through the typical heavy zone of corrosion, we found a heavier layer of rust scale over the surface that was very tough to remove. The typically seen orange nodules were present covering the surface but the degree of active coverage dropped off as we inspected towards the lake through the channel. The muscle population became almost non existent somewhere in the middle third of the channel. A few stray pieces were found out toward the lake end of the channel. Another phenomenon that was witnessed was the abrupt wall that forms in the water between the lake water and harbor water in the middle third of the channel on calm days. Within two feet, the water can go from murky to clear on days with very little flow through the channel. This may have some correlation with the muscle ending in the same area.

<u>Superior Entry</u> – The superior entry had typical corrosion characteristics throughout the entry. The outer most ice plates at SE10 and SE20 were heavily corroded with pitting penetrations in excess of .4 inches. The connections holding the plates in place were heavily deteriorated. Although the pitting penetration on SE7 to SE10 was not as significant as the ice plates, considering the short exposure of the new steel, it has seen a much accelerated level. Orange nodules coverage was over 50% of the sheet pile surfaces on the newly installed sheet pile.

Summary

Throughout the inspections, the typical conditions existed on the majority of the structures within the harbor confines. The major changes were noticed during the corrosion inspections of the Duluth channel entry. It appears from our inspections that the level of corrosion drops significantly as we head towards the lake through the channel. The superior entry corrosion was very consistent with the rest of the harbor even out near the lake end. Typical penetration of the pitting within the harbor in the 0 to 4 feet IGLD water level on all the USCG range cells was more than 3/8 of and inch and the structures were perforated. The accelerated corrosion problem became very evident in looking at the new steel just installed a few months ago on the superior entry, with orange nodules coverage over 50% of the sheet pile surfaces.

Photo Index-

Click on individual location to see photos.

Duluth Entry

DE1

DE2

DE3

DE₆

DE7

DE8

DE9 **DE10**

Army Corps Vessel Yard

<u>VY1</u> <u>VY2</u>

Erie Pier

EP1

EP2

USCG Structures

CGA1

CGC1

Alt Cell

Superior Entry

SE1

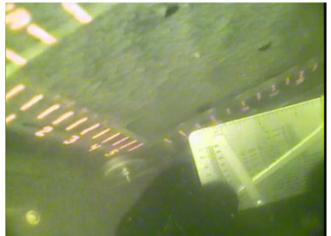
SE2

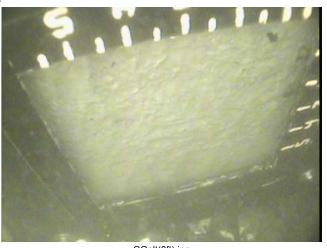
SE9

SE10

CORROSION INVESTIGATION USCG STRUCTURES CGA1(0ft).jpg CGA1(2ft).jpg CGA1(4ft).jpg CGA1(6ft).jpg CGA1(8ft).jpg CGalt(0ft).jpg

CGalt(2ft).jpg


CORROSION INVESTIGATION USCG STRUCTURES

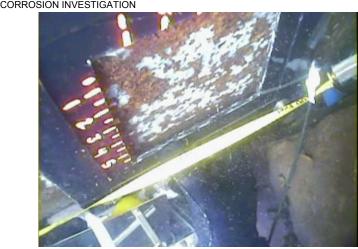

CGalt(4ft).jpg

CGC1(0ft).jpg

CGC1(4ft).jpg

CGalt(6ft).jpg

CGC1(2ft).jpg

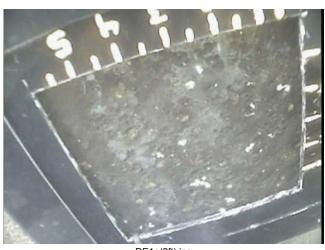

AMI CONSULTING ENGINEERS AMI#011036

CORROSION INVESTIGATION DULUTH ENTRY 1 DE1i(2ft).jpg DE1i(0ft).jpg DE1i(4ft).jpg DE1i(6ft).jpg DE1i(8ft).jpg DE1o(0ft).jpg DE1o(10ft).jpg DE1o(15ft).jpg

AMI CONSULTING ENGINEERS

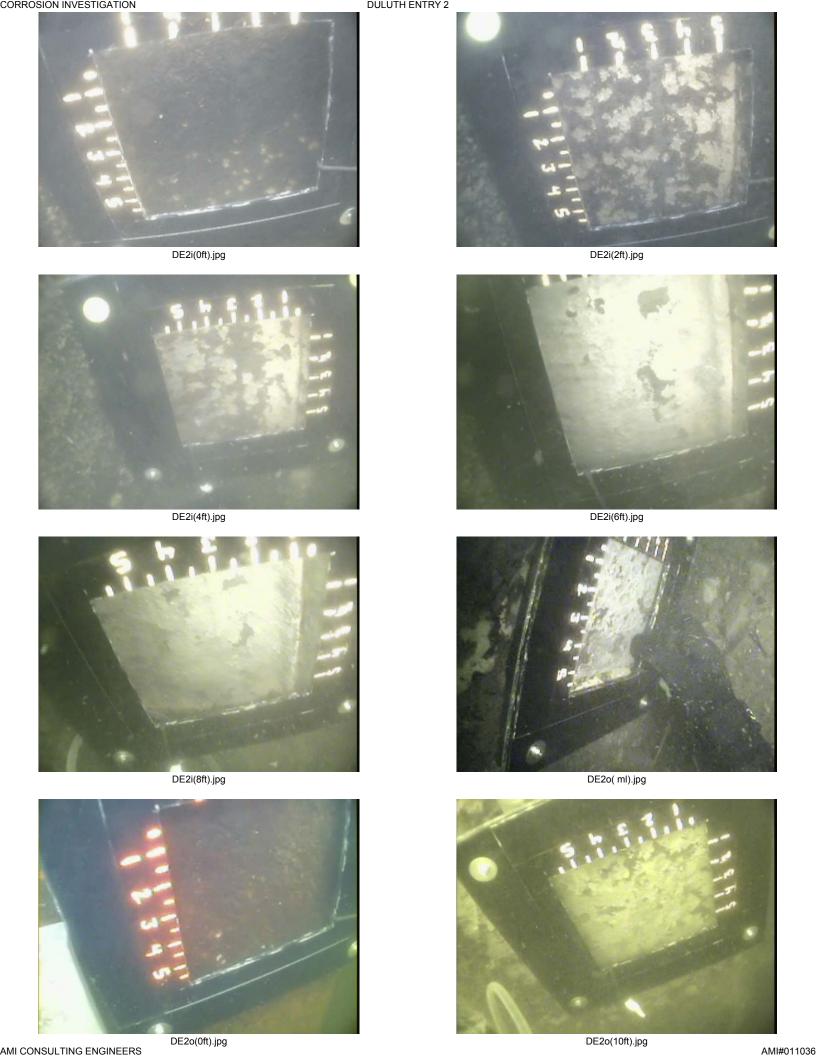
AMI#011036

DULUTH ENTRY 1


DE1o(20ft).jpg

DE1o(4ft).jpg

DE1o(8ft).jpg



DE1o(2ft).jpg

DE1o(6ft).jpg

AMI CONSULTING ENGINEERS AMI#011036

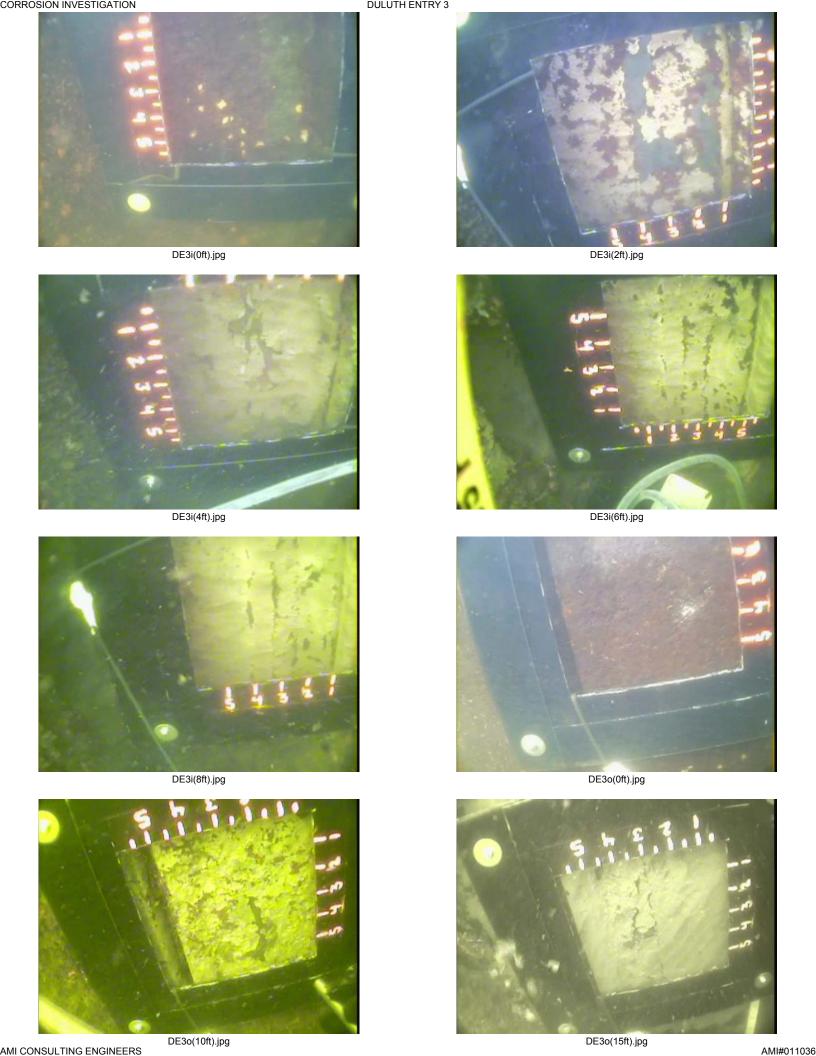
CORROSION INVESTIGATION DULUTH ENTRY 2

DE2o(15ft).jpg

DE2o(2ft).jpg

DE2o(6ft).jpg

DE2o(20ft).jpg



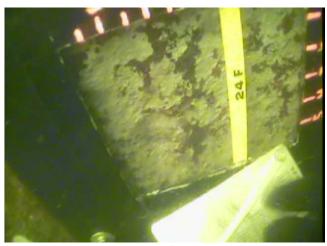
DE2o(4ft).jpg

DE2o(8ft).jpg

AMI CONSULTING ENGINEERS AMI#011036

CORROSION INVESTIGATION DULUTH ENTRY 3

DE3o(20ft).jpg


DE3o(4ft).jpg

DE3o(8ft).jpg

DE3o(2ft).jpg

DE3o(6ft).jpg

AMI CONSULTING ENGINEERS AMI#011036

CORROSION INVESTIGATION DULUTH ENTRY 4 DE4i(0ft).jpg DE4i(2ft).jpg DE4i(4ft).jpg DE4i(6ft).jpg DE4o(0ft).jpg DE4i(8ft).jpg DE4o(10ft).jpg DE4o(15ft).jpg

AMI CONSULTING ENGINEERS

AMI#011036

CORROSION INVESTIGATION DULUTH ENTRY 4 DE4o(29ft ml).jpg DE4o(20ft).jpg DE4o(4ft).jpg DE4o(2ft).jpg

DE4o(6ft).jpg DE4o(8ft).jpg

AMI CONSULTING ENGINEERS AMI#011036

CORROSION INVESTIGATION DULUTH ENTRY 5 DE5i(0ft).jpg DE5i(2ft).jpg DE5i(6ft).jpg DE5i(4ft).jpg DE5i(8ft).jpg DE5o(0ft).jpg .f.t.f.f.l.

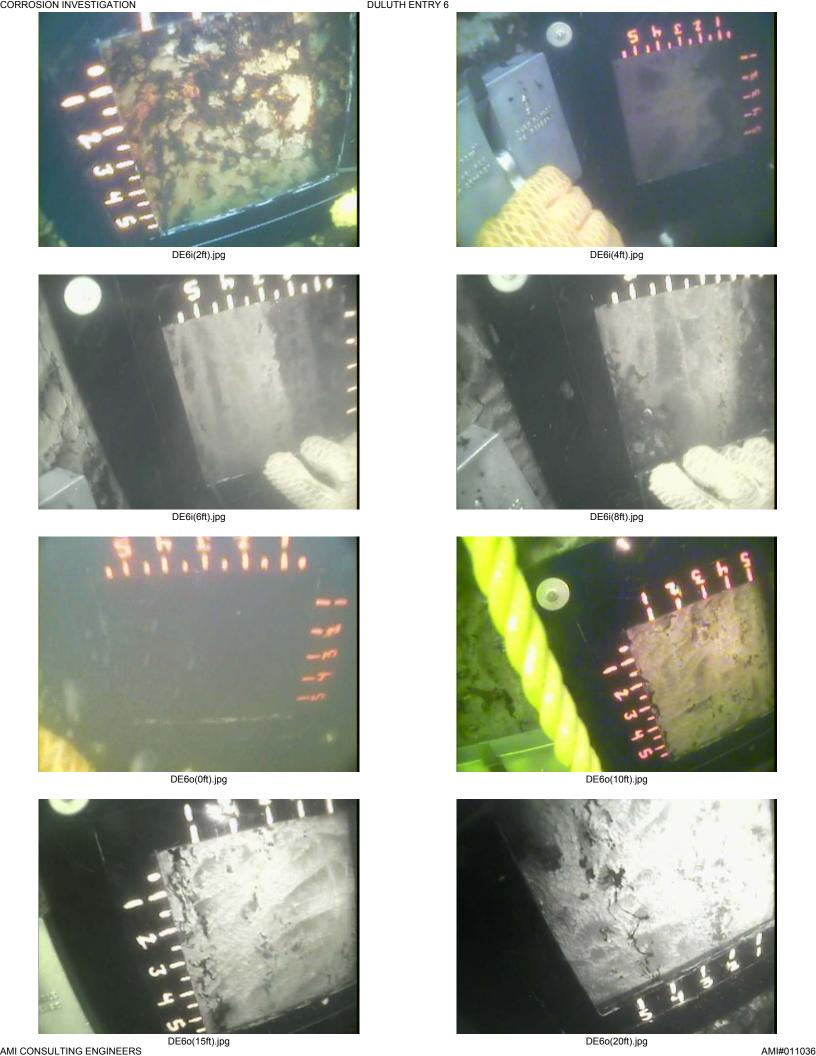
DE5o(10ft).jpg

DE5o(15ft).jpg

DULUTH ENTRY 5

DE5o(20ft ml).jpg

DE5o(4ft).jpg


DE5o(8ft).jpg

DE5o(2ft).jpg

DE5o(6ft).jpg

DULUTH ENTRY 6

DE6o(2ft).jpg

DE6o(6ft).jpg

DE6o(ml).jpg

DE6o(4ft).jpg

DE6o(8ft).jpg

CORROSION INVESTIGATION DULUTH ENTRY 7 DE7i(0ft).jpg DE7i(2ft).jpg DE7i(6ft).jpg DE7i(4ft).jpg DE7i(8ft).jpg DE7o(0ft).jpg DE7o(10ft).jpg DE7o(15ft).jpg AMI CONSULTING ENGINEERS AMI#011036 CORROSION INVESTIGATION DULUTH ENTRY 7

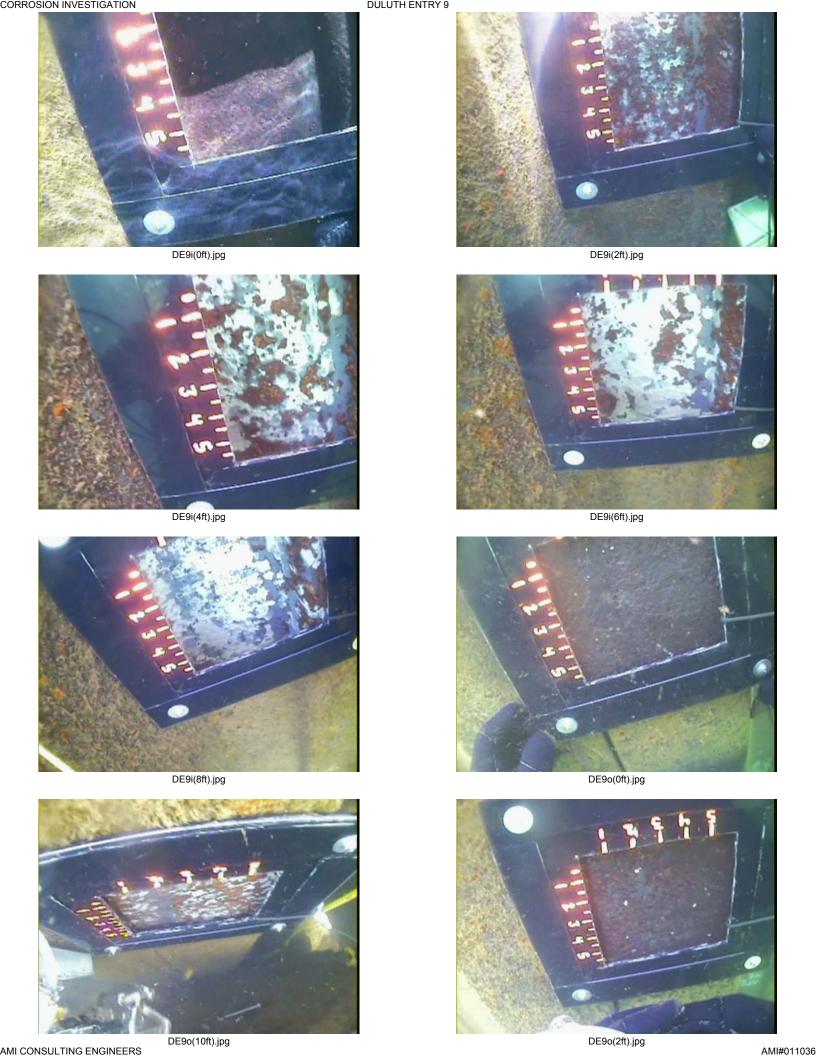
DE7o(20ft).jpg

DE7o(4ft).jpg

DE7o(8ft).jpg

DE7o(2ft).jpg

DE7o(6ft).jpg



DE7o(ml).jpg

CORROSION INVESTIGATION DULUTH ENTRY 8 DE8i(0ft).jpg DE8i(2ft).jpg DE8i(4ft).jpg DE8i(6ft).jpg DE8i(8ft).jpg DE8o(0ft).jpg DE8o(10ft).jpg DE8o(15ft).jpg AMI CONSULTING ENGINEERS AMI#011036 CORROSION INVESTIGATION DULUTH ENTRY 8 DE8o(20ft).jpg DE8o(2ft).jpg DE8o(6ft).jpg DE8o(4ft).jpg

DE8o(8ft).jpg

DE8o(ml).jpg

CORROSION INVESTIGATION DULUTH ENTRY 9

DE9o(4ft).jpg

DE9o(8ft).jpg

DE9o(6ft).jpg

DULUTH ENTRY 10

DE10i(2ft).jpg

DE10i(6ft).jpg

DE10o(0ft).jpg

DE10o(15ft).jpg

DE10i(4ft).jpg

DE10i(8ft).jpg

DE10o(10ft).jpg

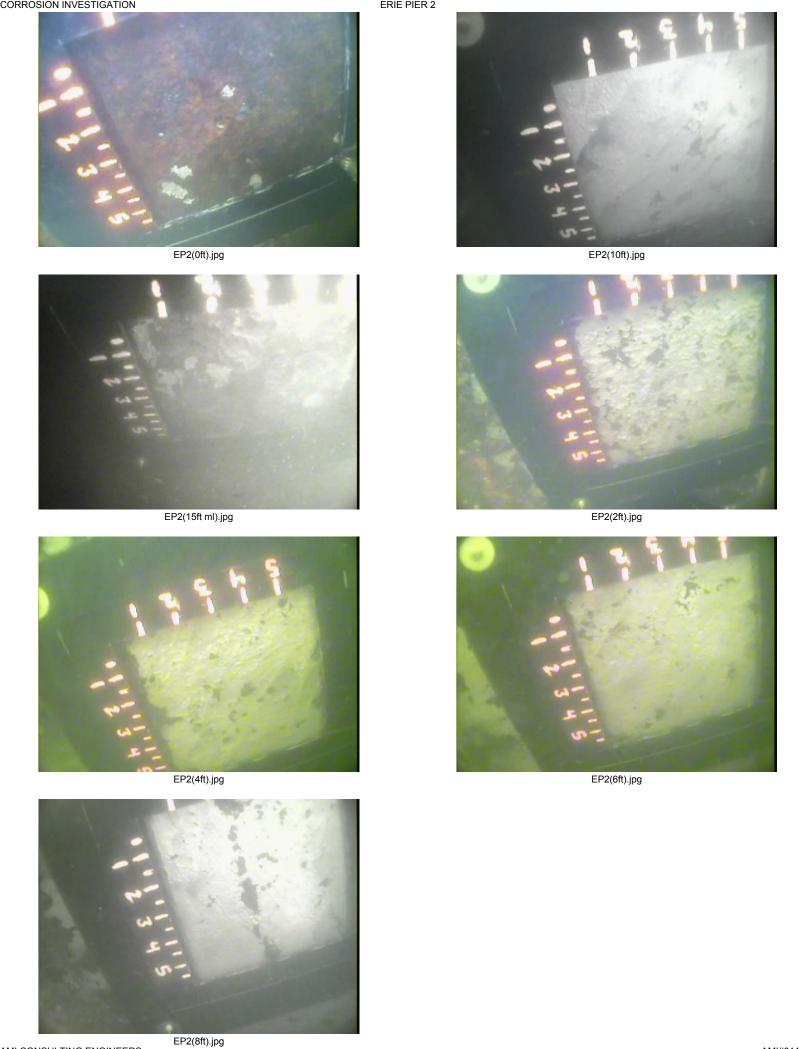
CORROSION INVESTIGATION DULUTH ENTRY 10

DE10o(2ft).jpg

DE10o(4ft).jpg

DE10o(8ft).jpg

DE10o(2ft)b.jpg


DE10o(6ft).jpg

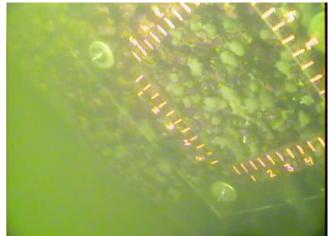
DE10o(ml).jpg

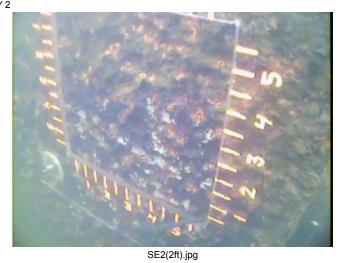
CORROSION INVESTIGATION ERIE PIER 1 EP1(0ft).jpg EP1(10ft).jpg EP1(13ft ml).jpg EP1(2ft).jpg EP1(4ft).jpg EP1(6ft).jpg

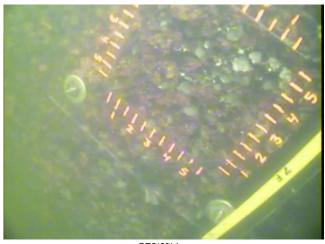
EP1(8ft).jpg

CORROSION INVESTIGATION SUPERIOR ENTRY 1 SE1o(0ft).jpg SE1o(2ft).jpg SE1o(6ft).jpg SE1o(4ft).jpg

SE1o(8ft).jpg


SUPERIOR ENTRY 2


SE2(0ft).jpg

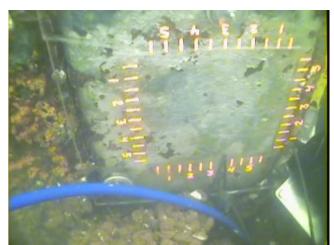


SE2(4ft).jpg

SE2(8ft).jpg

SE2(6ft).jpg

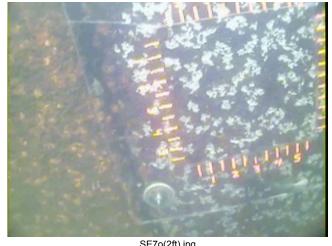
SUPERIOR ENTRY 7


SE7i(0ft).jpg

SE7i(4ft).jpg

SE7i(8ft).jpg

SE7o(10ft).jpg


SE7i(2ft).jpg

SE7i(6ft).jpg

SE7o(0ft).jpg

SE7o(2ft).jpg

CORROSION INVESTIGATION SUPERIOR ENTRY 7

SE7o(4ft).jpg

SE7o(8ft).jpg

SE7o(6ft).jpg

CORROSION INVESTIGATION SUPERIOR ENTRY 8 SE8i(0ft).jpg SE8i(2ft).jpg SE8i(4ft).jpg SE8i(6ft).jpg SE8o(0ft).jpg SE8i(8ft).jpg

AMI CONSULTING ENGINEERS

SE8o(15ft).jpg

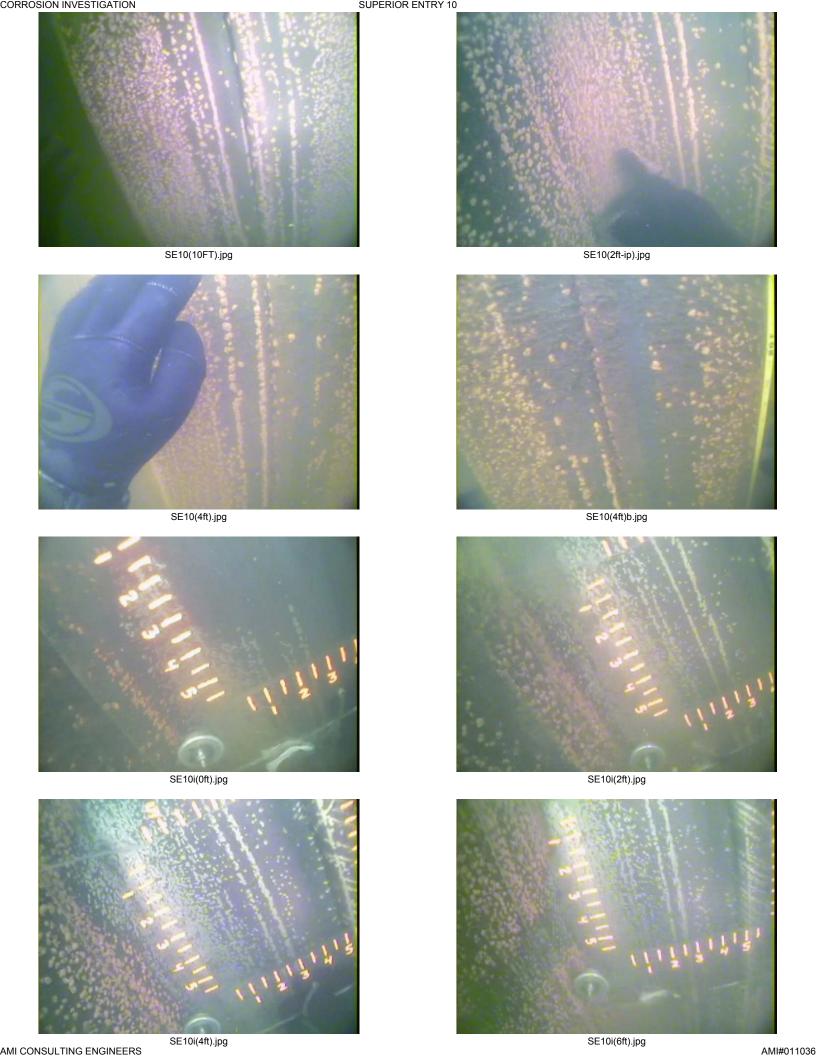
CORROSION INVESTIGATION SUPERIOR ENTRY 8

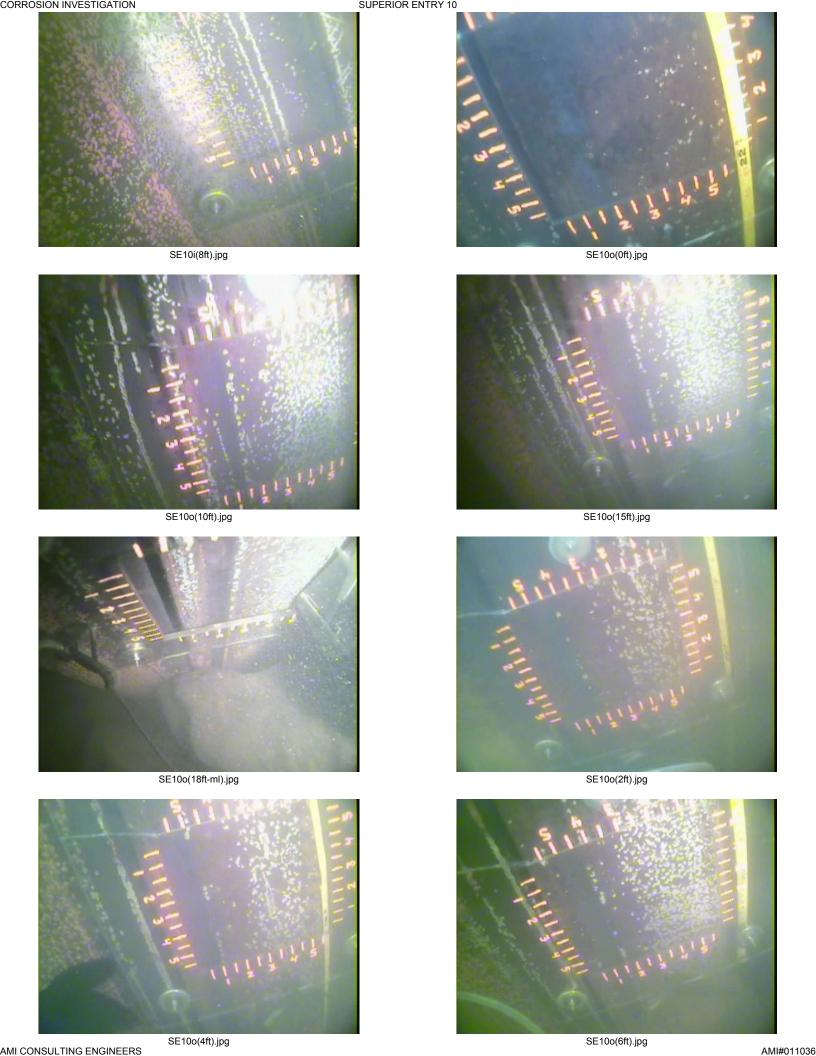
SE8o(20ft).jpg

SE8o(4ft).jpg

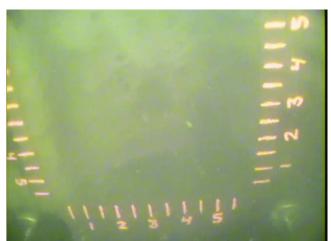
SE8o(8ft).jpg

SE8o(2ft).jpg




SE8o(6ft).jpg

SE9(ml).jpg

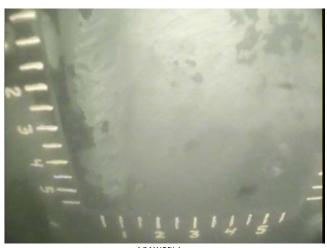


SE10o(8ft).jpg

VESSEL YARD 1

VY1i(0ft).jpg

VY1i(4ft).jpg


VY1i(8ft).jpg

VY1o(2ft).jpg

VY1i(2ft).jpg

VY1i(6ft).jpg

VY1o(0ft).jpg

VESSEL YARD 1

VY1o(6ft).jpg

VESSEL YARD 2

VY1o(8ft).jpg


VY2i(0ft).jpg

VY2i(2ft).jpg

VY2o(0ft).jpg

VY2o(2ft).jpg

VY2o(4ft).jpg

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Cell Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CGA10 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/18/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corre		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.375										\times	\times	\times	\times	> <
2 (0.0)	0.344	0.156	0.625	0.094	0.625	0.094	0.750	0.219	0.500	HIGH	\geq	\times	\times	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.304	0.179	0.375	0.116	0.250	0.116	0.500	0.179	0.250	HIGH					
4 (-4.0)	0.300	0.112	0.375	0.237	0.250	0.237	0.250	0.237	0.250	HIGH					
5 (-6.0)	0.320	0.257	0.250	0.257	0.188	0.257	0.188	0.257	0.125	HIGH					
6 (-8.0)	0.378	0.315	0.250	0.338	0.188	0.315	0.250	0.315	0.188	HIGH					
7 (-10.0)	0.320	0.290	0.125	0.290	0.188	0.257	0.250	0.280	0.125	HIGH					
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Range Cell **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CGB10 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/31/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corr		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.375										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.307	0.182	0.500	0.057	0.500	hole	0.625	hole	0.625	HIGH	\geq	\times	\times	\times	$>\!\!<$
3 (-2.0)	0.379	0.191	0.500	0.254	0.500	hole	0.375	hole	0.500	HIGH					
4 (-4.0)	0.363	0.303	0.250	0.300	0.375	0.313	0.500	0.293	0.375	HIGH					
5 (-6.0)	0.350	0.310	0.250	0.287	0.250	0.300	0.500	0.287	0.375	HIGH					
6 (-8.0)															
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Coast Guard Range Cell **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: CGC1o M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/18/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Flat SSP

				Sto	eel Corr		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.375										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.346	0.158	0.500	0.089	0.500	0.208	0.500	0.096	0.500	HIGH	\times	\times	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.278	0.122	0.375	0.153	0.750	0.153	0.500	0.065	0.625	HIGH					
4 (-4.0)	0.337	0.274	0.250	0.297	0.250	0.274	0.375	0.287	0.125	HIGH					
5 (-6.0)															
6 (-8.0)															
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE1i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr			Wate	r Quality	Data					
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.608										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.593	0.588	0.063	0.583	0.063	0.588	0.063	0.588	0.063	LOW	\times	\times	$>\!\!<$	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.578	0.453	0.375	0.515	0.375	0.538	0.375	0.538	0.188	MOD					
4 (-4.0)	0.608	0.545	0.500	0.518	0.500	0.518	0.375	0.558	0.250	MOD					
5 (-6.0)	0.613	0.513	0.750	0.550	0.375	0.550	0.500	0.563	0.375	MOD					
6 (-8.0)	0.628	0.588	0.375	0.608	0.188	0.608	0.250	0.588	0.188	MOD					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE10 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	el Corr		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.611										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.596	0.591	0.063	0.591	0.063	0.556	0.125	0.591	0.063	LOW	\times	\times	\times	\times	$>\!\!<$
3 (-2.0)	0.569	0.506	0.125	0.506	0.125	0.519	0.125	0.529	0.188	MOD					
4 (-4.0)	0.593	0.53	0.188	0.53	0.375	0.543	0.188	0.543	0.188	MOD					
5 (-6.0)	0.609	0.519	0.25	0.519	0.063	0.546	0.25	0.546	0.188	HIGH					
6 (-8.0)	0.608	0.545	0.188	0.545	0.125	0.558	0.188	0.568	0.188	HIGH					
7 (-10.0)	0.618	0.588	0.125	0.555	0.25	0.578	0.125	0.578	0.25	HIGH					
8 (-15.0)	0.613	0.55	0.25	0.55	0.25	0.543	0.25	0.563	0.188	HIGH					
9 (-21.0)	0.616	0.553	0.188	0.576	0.125	0.586	0.125	0.566	0.188	HIGH					
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE2i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.602										\times	\times	\times	\times	\times
2 (0.0)	0.604	0.564	0.188	0.541	0.250	0.541	0.188	0.541	0.188	MOD	\times	$>\!\!<$	$>\!\!<$	\times	\times
3 (-2.0)	0.618	0.508	0.500	0.518	0.375	0.528	0.375	0.548	0.250	HIGH					
4 (-4.0)	0.606	0.506	0.500	0.496	0.500	0.543	0.250	0.506	0.500	HIGH					
5 (-6.0)	0.604	0.504	0.250	0.541	0.188	0.564	0.250	0.554	0.188	HIGH					
6 (-8.0)	0.612	0.562	0.188	0.572	0.188	0.562	0.188	0.572	0.250	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE20 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr		Water Quality Data								
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.613										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.622	0.559	0.188	0.582	0.125	0.582	0.250	0.559	0.125	HIGH	\times	\times	\times	\times	$\geq \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \!$
3 (-2.0)	0.614	0.551	0.250	0.534	0.250	0.544	0.375	0.551	0.125	HIGH					
4 (-4.0)	0.603	0.523	0.188	0.503	0.188	0.493	0.375	0.533	0.500	HIGH					
5 (-6.0)	0.605	0.515	0.375	0.542	0.188	0.542	0.250	0.542	0.375	HIGH					
6 (-8.0)	0.615	0.575	0.250	0.552	0.250	0.552	0.250	0.552	0.250	HIGH					
7 (-10.0)	0.602	0.539	0.125	0.539	0.188	0.539	0.188	0.562	0.125	HIGH					
8 (-15.0)	0.612	0.549	0.188	0.582	0.188	0.602	0.250	0.592	0.125	HIGH					
9 (-20.0)	0.621	0.591	0.125	0.601	0.125	0.591	0.250	0.601	0.188	HIGH					
10 (-31)	0.623	0.583	0.125	0.583	0.188	0.553	0.250	0.583	0.125	MOD					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 3i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr		Water Quality Data								
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.628										\times	\times	\times	\times	\times
2 (0.0)	0.619	0.579	0.250	0.569	0.250	0.539	0.250	0.549	0.188	HIGH	\times	\times	\times	\times	\times
3 (-2.0)	0.602	0.539	0.625	0.552	0.625	0.532	0.500	0.539	0.188	HIGH					
4 (-4.0)	0.604	0.541	0.188	0.554	0.188	0.541	0.250	0.541	0.125	HIGH					
5 (-6.0)	0.596	0.556	0.188	0.471	0.250	0.556	0.063	0.546	0.188	HIGH					
6 (-8.0)	0.619	0.539	0.063	0.556	0.125	0.556	0.250	0.556	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron:

Sulfate lons: Alkalinity:

Chloride Ions:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE30 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.607										\times	\times	\times	\times	> <
2 (0.0)	0.604	0.564	0.188	0.574	0.125	0.544	0.250	0.541	0.125	HIGH	\times	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.595	0.515	0.250	0.532	0.188	0.515	0.250	0.532	0.500	HIGH					
4 (-4.0)	0.597	0.507	0.250	0.497	0.375	0.507	0.375	0.537	0.375	HIGH					
5 (-6.0)	0.605	0.542	0.250	0.565	0.125	0.555	0.125	0.565	0.250	HIGH					
6 (-8.0)	0.604	0.541	0.188	0.564	0.125	0.554	0.125	0.554	0.125	HIGH					
7 (-10.0)	0.618	0.555	0.188	0.578	0.250	0.555	0.250	0.555	0.250	HIGH					
8 (-15.0)	0.611	0.571	0.125	0.601	0.188	0.531	0.063	0.548	0.125	MOD					
9 (-20.0)	0.612	0.572	0.188	0.592	0.125	0.572	0.125	0.562	0.250	LOW					
10 (-30.0)	0.615	0.575	0.500	0.585	0.375	0.565	0.250	0.575	0.188	LOW					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE4i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.606										\times	\times	\times	\times	\times
2 (0.0)	0.581	0.551	0.125	0.561	0.250	0.541	0.250	0.551	0.125	MOD	\times	\times	\times	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.585	0.505	0.625	0.522	0.375	0.522	0.250	0.522	0.250	HIGH					
4 (-4.0)	0.592	0.542	0.250	0.542	0.125	0.562	0.188	0.572	0.125	HIGH					
5 (-6.0)	0.603	0.540	0.125	0.553	0.125	0.553	0.063	0.573	0.125	HIGH					
6 (-8.0)	0.615	0.585	0.188	0.595	0.125	0.585	0.125	0.595	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

2. All steel measurements are in inches to the nearest thousandth of an inch.

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE40 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Ste	eel Corr	osion Da	ata					Wate	r Quality	Data Data	
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.600										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.578	0.515	0.250	0.515	0.188	0.548	0.188	0.515	0.250	MOD	\times	$>\!\!<$	\times	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.587	0.497	0.500	0.524	0.375	0.524	0.375	0.497	0.188	HIGH					
4 (-4.0)	0.626	0.563	0.125	0.563	0.250	0.563	0.125	0.546	0.625	HIGH					
5 (-6.0)	0.623	0.560	0.125	0.583	0.500	0.583	0.375	0.593	0.188	HIGH					
6 (-8.0)	0.606	0.543	0.125	0.566	0.250	0.586	0.063	0.566	0.125	HIGH					
7 (-10.0)	0.635	0.605	0.250	0.615	0.125	0.585	0.250	0.595	0.188	HIGH					
8 (-15.0)	0.581	0.561	0.250	0.566	0.375	0.561	0.375	0.556	0.375	HIGH					
9 (-20.0)	0.626	0.596	0.125	0.616	0.250	0.611	0.250	0.606	0.250	HIGH					
10 (29.5)	0.623	0.583	0.375	0.603	0.250	0.573	0.250	0.583	0.125	MOD					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE5i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6" Surface Type Inner Flange

				Sto	eel Corr	osion D	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.596										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.524	0.399	0.500	0.384	0.500	0.424	0.063	0.424	0.250	HIGH	\times	\times	$>\!\!<$	\times	\times
3 (-2.0)	0.606	0.476	0.250	0.486	0.500	0.543	0.063	0.543	0.125	HIGH					
4 (-4.0)	0.589	0.499	0.125	0.499	0.063	0.469	0.063	0.489	0.063	HIGH					
5 (-6.0)	0.613	0.483	1.000	0.550	0.125	0.513	0.500	0.513	0.500	HIGH					
6 (-8.0)	0.623	0.523	0.250	0.493	0.125	0.513	0.125	0.523	0.063	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE50 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data Data	
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.609										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.593	0.468	0.250	0.503	0.500	0.473	0.250	0.533	0.125	Mod	\times	\times	\times	\times	\times
3 (-2.0)	0.563	0.463	0.500	0.438	0.188	0.413	0.500	0.423	0.250	High					
4 (-4.0)	0.608	0.433	1.000	0.448	0.750	0.488	0.250	0.508	0.750	High					
5 (-6.0)	0.560	0.395	0.500	0.497	0.250	0.460	0.250	0.450	0.188	High					
6 (-8.0)	0.618	0.555	0.063	0.518	0.500	0.538	0.500	0.513	0.625	High					
7 (-10.0)	0.626	0.546	0.500	0.556	0.125	0.536	0.125	0.563	0.125	High					
8 (-15.0)	0.616	0.491	0.250	0.516	0.063	0.426	0.063	0.516	0.063	High					
9 (-20.0)	0.617	0.554	0.063	0.554	0.125	0.527	0.125	0.517	0.125	High					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons: Alkalinity:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: ACOE Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE6i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.611										\times	\times	\times	\times	> <
2 (0.0)	0.614	0.551	0.063	0.544	0.250	0.551	0.063	0.564	0.125	MOD	\geq	\times	\geq	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.623	0.498	0.500	0.503	0.063	0.498	0.500	0.473	0.500	HIGH					
4 (-4.0)	0.617	0.554	0.250	0.527	0.063	0.477	0.125	0.497	0.188	HIGH					
5 (-6.0)	0.609	0.449	0.125	0.549	0.063	0.519	0.125	0.546	0.250	HIGH					
6 (-8.0)	0.615	0.552	0.063	0.505	0.250	0.525	0.250	0.552	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 60 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corre	osion Da	ata					Wate	r Quality	<i>D</i> ata	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.611										\times	\times	\times	\times	> <
2 (0.0)	0.609	0.546	0.063	0.484	0.250	0.519	0.063	0.546	0.125	LOW	\times	$>\!\!<$	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.612	0.487	0.500	0.462	0.500	0.462	0.250	0.487	0.313	MOD					
4 (-4.0)	0.612	0.462	0.750	0.462	0.875	0.482	0.125	0.462	0.250	HIGH					
5 (-6.0)	0.614	0.489	0.125	0.494	0.250	0.514	0.063	0.551	0.125	HIGH					
6 (-8.0)	0.616	0.536	0.063	0.506	0.125	0.526	0.250	0.553	0.500	HIGH					
7 (-10.0)	0.533	0.453	0.063	0.423	0.063	0.413	0.250	0.403	0.375	HIGH					
8 (-15.0)	0.618	0.555	0.250	0.518	0.125	0.518	0.125	0.528	0.250	HIGH					
9 (-20.0)	0.613	0.583	0.063	0.523	0.063	0.513	0.250	0.503	0.125	HIGH					
10 (25)	0.601	0.538	0.250	0.538	0.063	0.511	0.125	0.526	0.063	HIGH					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE7i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 9/1/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion D	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.063										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.606	0.586	0.125	0.556	0.250	0.556	0.250	0.556	0.125	LOW	\times	\times	$>\!\!<$	\times	\times
3 (-2.0)	0.603	0.543	0.250	0.523	0.250	0.523	0.250	0.533	0.188	HIGH					
4 (-4.0)	0.625	0.585	0.250	0.605	0.250	0.575	0.188	0.575	0.188	HIGH					
5 (-6.0)	0.573	0.523	0.250	0.523	0.125	0.553	0.125	0.523	0.250	HIGH					
6 (-8.0)	0.612	0.572	0.250	0.602	0.250	0.592	0.375	0.582	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

2. All steel measurements are in inches to the nearest thousandth of an inch.

Total Suspended Solids:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Chloride Ions:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE70 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 9/1/2006 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	el Corr	osion Da	ata				Wate	r Quality	Data		
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.591										\times	\times	\times	\times	> <
2 (0.0)	0.607	0.547	0.250	0.547	0.125	0.547	0.125	0.557	0.125	MOD	\times	$>\!\!<$	$>\!\!<$	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.607	0.507	0.500	0.497	0.375	0.497	0.375	0.527	0.625	HIGH					
4 (-4.0)	0.594	0.524	0.125	0.504	0.188	0.544	0.375	0.531	0.250	HIGH					
5 (-6.0)	0.611	0.541	0.188	0.511	0.375	0.548	0.125	0.561	0.250	HIGH					
6 (-8.0)	0.567	0.517	0.188	0.547	0.250	0.537	0.188	0.547	0.125	HIGH					
7 (-10.0)	0.617	0.587	0.250	0.577	0.125	0.577	0.250	0.577	0.125	HIGH					
8 (-15.0)	0.627	0.577	0.250	0.587	0.375	0.587	0.375	0.617	0.250	HIGH					
9 (-20.0)	0.622	0.582	0.250	0.602	0.188	0.562	0.250	0.592	0.188	HIGH					
10 (-30.5)	0.619	0.559	0.375	0.579	0.375	0.494	0.625	0.569	0.500	LOW					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids: Hardness:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Total Iron:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry (south wall) **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 8i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 9/1/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.596										\times	\times	\times	\times	\times
2 (0.0)	0.579	0.479	0.250	0.529	0.250	0.499	0.250	0.516	0.250	MOD	\geq	\geq	\times	$>\!\!<$	$\geq \!$
3 (-2.0)	0.597	0.534	0.500	0.534	0.250	0.547	0.375	0.534	0.375	HIGH					
4 (-4.0)	0.623	0.583	0.375	0.573	0.250	0.583	0.250	0.573	0.250	HIGH					
5 (-6.0)	0.628	0.618	0.125	0.618	0.250	0.598	0.375	0.588	0.250	HIGH					
6 (-8.0)	0.609	0.569	0.125	0.589	0.375	0.589	0.250	0.569	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Chloride Ions:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Acoe Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE80 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.618										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.615	0.515	0.500	0.495	0.500	0.505	0.250	0.490	0.250	HIGH	\times	\times	\times	\times	\times
3 (-2.0)	0.609	0.484	0.500	0.459	0.500	0.449	0.375	0.439	0.250	HIGH					
4 (-4.0)	0.605	0.425	1.000	0.455	0.750	0.455	0.500	0.455	0.500	HIGH					
5 (-6.0)	0.599	0.449	0.500	0.449	1.000	0.469	0.625	0.449	0.500	HIGH					
6 (-8.0)	0.603	0.428	0.500	0.453	1.000	0.453	0.250	0.503	0.125	HIGH					
7 (-10.0)	0.598	0.448	0.313	0.468	0.250	0.498	0.125	0.448	0.250	HIGH					
8 (-15.0)	0.610	0.470	0.250	0.470	0.125	0.510	0.250	0.440	0.063	HIGH					
9 (-20.0)	0.605	0.525	0.063	0.535	0.063	0.525	0.125	0.505	0.063	MOD					
10 (-29.5)	0.628	0.598	0.250	0.608	0.125	0.588	0.125	0.578	0.188	LOW					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE 9i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/22/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				St	eel Corr	osion D	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.618										>>	>>	$>\!\!<$	\times	$>\!\!<$
2 (0.0)	0.611	0.581	0.125	0.591	0.125	0.571	0.125	0.561	0.188	MOD	\times	\times	\times	\times	\times
3 (-2.0)	0.611	0.548	0.250	0.571	0.188	0.551	0.188	0.548	0.188	HIGH					
4 (-4.0)	0.617	0.554	0.250	0.567	0.188	0.567	0.188	0.567	0.188	HIGH					
5 (-6.0)	0.616	0.566	0.125	0.566	0.250	0.553	0.250	0.566	0.188	HIGH					
6 (-8.0)	0.623	0.583	0.125	0.593	0.125	0.593	0.188	0.583	0.125	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE90 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/22/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion D	ata				Wate	r Quality	Data Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.616										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.615	0.585	0.125	0.565	0.063	0.595	0.125	0.595	0.125	MOD	\times	\times	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.598	0.548	0.188	0.498	0.250	0.538	0.125	0.558	0.188	High					
4 (-4.0)	0.614	0.534	0.188	0.564	0.188	0.564	0.188	0.564	0.188	High					
5 (-6.0)	0.612	0.549	0.250	0.549	0.125	0.549	0.125	0.542	0.250	High					
6 (-8.0)	0.603	0.540	0.250	0.553	0.188	0.563	0.188	0.573	0.125	High					
7 (-10.0)	0.626	0.586	0.125	0.596	0.125	0.586	0.188	0.596	0.125	High					
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE10i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/22/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion Da	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.618										\times	\times	\times	\times	\times
2 (0.0)	0.613	0.550	0.063	0.513	0.250	0.550	0.063	0.550	0.063	LOW	\times	$>\!\!<$	$>\!\!<$	\times	\times
3 (-2.0)	0.598	0.473	0.250	0.423	0.500	0.473	0.500	0.403	0.500	HIGH					
4 (-4.0)	0.605	0.430	0.500	0.470	0.250	0.455	0.500	0.480	0.500	HIGH					
5 (-6.0)	0.617	0.554	0.250	0.554	0.125	0.517	0.063	0.492	0.750	MOD					
6 (-8.0)	0.609	0.489	0.250	0.546	0.125	0.546	0.250	0.509	0.063	MOD					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Total Iron:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Duluth Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: DE100 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/22/06 L = Low (0 - 50% Pitted)P1dia = Pit 1 diameter

Surface Type Outer Flange Square Size of Steel Data: 6 inches

				St	eel Corr	osion Da	ata					Wate	r Quality	/ Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.615										\times	\times	\times	\times	\times
2 (0.0)	0.618	0.493	0.500	0.468	0.500	0.493	0.750	0.468	0.250	HIGH	\times	\times	\times	\times	\times
3 (-2.0)	0.617	0.492	0.500	0.517	0.500	0.507	0.750	0.492	0.250	HIGH					
4 (-4.0)	0.613	0.488	1.250	0.493	0.500	0.488	0.750	0.483	0.875	HIGH					
5 (-6.0)	0.614	0.514	0.250	0.494	0.063	0.426	0.750	0.489	0.500	HIGH					
6 (-8.0)	0.621	0.496	0.500	0.521	0.250	0.521	0.125	0.521	0.500	HIGH					
7 (-10.0)	0.605	0.542	0.063	0.542	0.250	0.525	0.063	0.542	0.250	LOW					
8 (-15.0)	0.611	0.521	0.063	0.521	0.125	0.521	0.500	0.561	0.250	LOW					
9 (-20.0)	0.613	0.513	0.250	0.543	0.063	0.533	0.250	0.553	0.063	MOD					
10 (-30.5)	0.619	0.494	0.500	0.444	0.050	0.494	0.500	0.494	0.188	MOD					
	* Indicate						Wa	ter Sam	ple Data	at -4.0	Below L	WD			

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Erie Pier **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corre	osion Da	ata				Wate	r Quality	<i>D</i> ata		
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.375										\times	\times	\times	\times	> <
2 (0.0)	0.382	0.352	0.125	0.342	0.250	0.352	0.063	0.292	0.250	LOW	\times	\times	\times	\times	$>\!\!<$
3 (-2.0)	0.371	0.308	0.250	0.246	0.250	0.271	0.188	0.281	0.188	HIGH					
4 (-4.0)	0.369	0.319	0.188	0.329	0.188	0.339	0.125	0.319	0.250	HIGH					
5 (-6.0)	0.366	0.326	0.125	0.316	0.188	0.336	0.125	0.326	0.125	HIGH					
6 (-8.0)	0.371	0.321	0.188	0.331	0.188	0.308	0.125	0.331	0.125	HIGH					
7 (-10.0)	0.378	0.338	0.125	0.348	0.125	0.358	0.188	0.253	1.000	HIGH					
8 (-15.0)	0.374	0.334	0.125	0.324	0.125	0.311	0.063	0.344	0.250	HIGH					
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Erie Pier **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: EP2o M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/23/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.379										\times	\times	\times	\times	> <
2 (0.0)	0.377	0.252	0.500	0.314	0.375	0.252	0.500	0.314	0.250	HIGH	\geq	\times	\geq	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.371	0.281	0.188	0.291	0.188	0.271	0.125	0.291	0.188	HIGH					
4 (-4.0)	0.369	0.306	0.188	0.329	0.125	0.279	0.188	0.319	0.125	HIGH					
5 (-6.0)	0.358	0.295	0.125	0.318	0.125	0.298	0.063	0.318	0.125	HIGH					
6 (-8.0)	0.371	0.327	0.188	0.308	0.125	0.271	0.250	0.308	0.188	HIGH					
7 (-10.0)	0.369	0.306	0.250	0.306	0.125	0.329	0.125	0.329	0.125	HIGH					
8 (-15.0)	0.372	0.332	0.125	0.332	0.125	0.282	0.500	0.309	0.250	HIGH					
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE10 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Plate

				Sto	eel Corr	osion D	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)											\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.899	0.774	0.500	0.711	0.500	0.711	0.500	0.743	0.375	HIGH	\times	$>\!\!<$	$>\!\!<$	\times	\times
3 (-2.0)	0.982	0.763	0.500	0.794	0.500	0.732	0.625	0.669	0.500	HIGH					
4 (-4.0)	1.460	1.147	0.625	1.147	0.500	1.147	0.500	1.210	0.500	HIGH					
5 (-6.0)	1.440	1.190	0.750	1.127	0.750	1.221	0.750	1.252	0.750	HIGH					
6 (-8.0)	1.465	1.152	0.750	1.215	0.625	1.152	0.625	1.065	0.750	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE20 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Plate

				Sto	eel Corr	osion Da	ata					Wate	r Quality	Data	
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)											\times	\times	> <	\times	\times
2 (0.0)	0.846	0.690	0.375	0.690	0.625	0.721	0.625	0.658	0.500	HIGH	$\geq \leq$	$\geq \leq$	$\geq \leq$	$>\!\!<$	$\geq \leq$
3 (-2.0)	1.060	0.810	0.500	0.872	0.375	0.810	0.625	0.810	0.500	HIGH					
4 (-4.0)	1.450	1.200	0.625	1.075	0.625	1.137	0.625	1.137	0.750	HIGH					
5 (-6.0)	1.340	1.090	0.500	0.940	0.625	0.902	0.500	1.027	0.500	HIGH					
6 (-8.0)	1.350	0.950	0.500	0.975	0.625	1.010	0.625	0.930	0.375	HIGH					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride Ions:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE7i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				St	eel Corr	osion D	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.421										\times	\times	\times	\times	> <
2 (0.0)	0.420	0.357	0.250	0.357	0.250	0.357	0.188	0.357	0.250	HIGH	\times	\times	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.413	0.350	0.188	0.350	0.250	0.350	0.500	0.350	0.250	HIGH					
4 (-4.0)	0.418	0.387	0.375	0.387	0.250	0.355	0.250	0.355	0.188	HIGH					
5 (-6.0)	0.413	0.382	0.375	0.382	0.188	0.382	0.125	0.382	0.188	MOD					
6 (-8.0)	0.421	0.358	0.250	0.411	0.188	0.401	0.250	0.411	0.375	MOD					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE70 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corr	osion Da	ata				Wate	r Quality	Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.417										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.416	0.385	0.125	0.396	0.063	0.353	0.125	0.385	0.188	HIGH	\times	$>\!\!<$	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.403	0.340	0.125	0.340	0.188	0.340	0.188	0.340	0.125	HIGH					
4 (-4.0)	0.428	0.334	0.250	0.365	0.188	0.365	0.188	0.365	0.375	HIGH					
5 (-6.0)	0.422	0.359	0.188	0.359	0.375	0.359	0.250	0.359	0.375	HIGH					
6 (-8.0)	0.416	0.385	0.250	0.353	0.250	0.353	0.250	0.385	0.188	HIGH					
7 (-10.0)	0.415	0.405	0.500	0.395	0.250	0.405	0.125	0.395	0.375	LOW					
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE8i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto	eel Corr	osion D	ata				Wate	r Quality	Data Data		
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.409										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.417	0.387	0.250	0.387	0.188	0.377	0.375	0.387	0.250	HIGH	\times	\times	\times	\times	\times
3 (-2.0)	0.414	0.351	0.250	0.351	0.250	0.374	0.125	0.351	0.375	HIGH					
4 (-4.0)	0.421	0.381	0.125	0.401	0.250	0.401	0.125	0.381	0.188	HIGH					
5 (-6.0)	0.414	0.394	0.125	0.404	0.188	0.404	0.125	0.384	0.188	MOD					
6 (-8.0)	0.407	0.387	0.750	0.387	0.250	0.387	0.750	0.397	0.250	LOW					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

Notes: 1. See Plates 1 through 9 for locations of data.

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE80 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto	eel Corre	osion Da	ata				Wate	r Quality	<i>D</i> ata		
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.413										\times	\times	\times	\times	> <
2 (0.0)	0.410	0.379	0.125	0.379	0.188	0.379	0.125	0.347	0.188	LOW	\times	\times	\times	\times	$>\!\!\!<$
3 (-2.0)	0.417	0.386	0.125	0.354	0.063	0.354	0.188	0.354	0.125	MOD					
4 (-4.0)	0.409	0.346	0.250	0.346	0.250	0.346	0.250	0.346	0.188	HIGH					
5 (-6.0)	0.409	0.346	0.250	0.346	0.188	0.346	0.375	0.346	0.250	HIGH					
6 (-8.0)	0.418	0.398	0.250	0.398	0.125	0.398	0.250	0.398	0.250	LOW					
7 (-10.0)	0.414	0.394	0.125	0.394	0.063	0.384	0.063	0.394	0.125	LOW					
8 (-15.0)	0.411	0.391	0.375	0.391	0.375	0.381	0.500	0.371	0.188	LOW					
9 (-20.0)	0.419	0.409	0.125	0.409	0.125	0.399	0.125	0.409	0.063	LOW					
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Notes: 1. See Plates 1 through 9 for locations of data.

Hardness:

Chloride Ions:

Total Iron:

Sulfate lons: Alkalinity:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE90 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/17/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Ste	el Corre	osion Da	ata				Wate	r Quality	<i>D</i> ata		
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.371										\times	\times	\times	\times	> <
2 (0.0)	0.367	0.357	0.063	0.360	0.063	0.360	0.125	0.360	0.125	LOW	\times	$>\!\!<$	$>\!\!<$	\times	$>\!\!<$
3 (-2.0)	0.369	0.359	0.063	0.350	0.063	0.350	0.125	0.360	0.063	MOD					
4 (-4.0)	0.377	0.357	0.063	0.370	0.063	0.370	0.063	0.360	0.063	HIGH					
5 (-6.0)	0.386	0.346	0.063	0.370	0.063	0.370	0.063	0.380	0.063	HIGH					
6 (-8.0)	0.376	0.366	0.063	0.350	0.063	0.360	0.063	0.360	0.063	HIGH					
7 (-10.0)	0.370	0.350	0.063	0.350	0.063	0.360	0.125	0.350	0.063	MOD					
8 (-15.0)	0.369	0.339	0.063	0.350	0.031	0.350	0.063	0.360	0.031	LOW					
9 (-20.0)	0.370	0.350	0.063	0.360	0.063	0.360	0.063	0.360	0.063	LOW					
10 (-25.0)	0.379	0.369	0.063	0.370	0.031	0.370	0.031	0.370	0.031	LOW					

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE10i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/18/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto		Water Quality Data									
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.378										\times	\times	\times	\times	\times
2 (0.0)	0.385	0.375	0.063	0.380	0.031	0.380	0.031	0.380	0.031	LOW	\times	$>\!\!<$	$>\!\!<$	\times	\times
3 (-2.0)	0.372	0.357	0.063	0.352	0.063	0.357	0.063	0.357	0.031	LOW					
4 (-4.0)	0.386	0.367	0.063	0.366	0.094	0.376	0.063	0.366	0.094	LOW					
5 (-6.0)	0.376	0.366	0.063	0.366	0.063	0.366	0.063	0.366	0.063	MOD					
6 (-8.0)	0.375	0.370	0.063	0.365	0.063	0.370	0.063	0.370	0.063	LOW					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: Superior Entry **Corrosion Rating (CR):** H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: SE100 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/8/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto		Water Quality Data									
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.374										\times	\times	\times	\times	> <
2 (0.0)	0.363	NR	NR	NR	NR	NR	NR	NR	NR	LOW	\times	\times	\times	$>\!\!<$	$\geq \leq$
3 (-2.0)	0.372	0.362	0.063	0.367	0.063	0.357	0.063	0.357	0.063	LOW					
4 (-4.0)	0.377	0.357	0.063	0.367	0.063	0.372	0.063	0.372	0.125	LOW					
5 (-6.0)	0.363	0.353	0.094	0.353	0.063	0.353	0.063	0.353	0.063	LOW					
6 (-8.0)	0.370	0.365	0.031	0.355	0.063	0.365	0.063	0.365	0.063	MOD					
7 (-10.0)	0.371	0.366	0.063	0.366	0.063	0.361	0.063	0.366	0.063	MOD					
8 (-15.0)	0.371	0.366	0.031	0.366	0.031	0.361	0.031	0.361	0.063	MOD					
9(-18.0)	0.367	0.362	0.063	0.362	0.031	0.362	0.063	0.362	0.063	MOD					
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY1i M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto		Water Quality Data									
Elevation	T	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	pН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.381										\times	\times	\times	\times	\times
2 (0.0)	0.374	0.186	0.750	0.218	0.500	0.214	0.375	0.280	0.500	HIGH	\times	$>\!\!<$	$>\!\!<$	\times	\times
3 (-2.0)	0.343	0.280	0.250	0.218	0.250	0.243	0.250	0.280	0.250	MOD					
4 (-4.0)	0.378	0.268	0.250	0.355	0.250	0.293	0.188	0.324	0.188	MOD					
5 (-6.0)	0.390	0.296	0.375	0.327	0.250	0.327	0.375	0.296	0.125	HIGH					
6 (-8.0)	0.393	0.330	0.250	0.330	0.250	0.373	0.250	0.299	0.250	MOD					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955 **Total Iron:**

Sulfate lons: Alkalinity:

Chloride Ions:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY10 M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				St	Water Quality Data										
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.376										\times	\times	\times	\times	$>\!\!<$
2 (0.0)	0.389	0.274	0.375	0.274	0.250	0.243	0.500	0.243	0.250	HIGH	\times	\times	\geq	$>\!\!<$	$>\!\!<$
3 (-2.0)	0.384	0.300	0.188	0.331	0.240	0.331	0.375	0.300	0.250	HIGH					
4 (-4.0)	0.387	0.262	0.250	0.262	0.250	0.324	0.250	0.357	0.188	MOD					
5 (-6.0)	0.387	0.272	0.188	0.272	0.250	0.303	0.250	0.357	0.250	MOD					
6 (-8.0)	0.381	0.320	0.250	0.351	0.250	0.320	0.125	0.374	0.250	MOD					
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

^{*} Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Chloride lons:

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY2o M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Inner Flange

				Sto		Water Quality Data									
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.381										\times	\times	\times	\times	\times
2 (0.0)	0.377	0.330	0.500	0.299	0.500	0.299	0.625	0.264	0.500	HIGH	\times	\times	\times	\times	$>\!\!<$
3 (-2.0)	0.339	0.276	0.125	0.276	0.094	0.276	0.250	0.269	0.250	HIGH					
4 (-4.0)	0.385	0.352	0.250	0.295	0.125	0.352	0.125	0.321	0.250	MOD					
5 (-6.0)	0.381	0.342	0.375	0.396	0.125	0.336	0.188	0.326	0.250	MOD					
6 (-8.0)															
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

6 feet

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

3. All elevations are referenced from Low Water Datum = IGLD 1955 Total Iron:

Sulfate lons: Alkalinity:

Chloride Ions:

Data Entry Sheet

US Army Corps of Engineers

Structure Location: USACE Vessel Yard Corrosion Rating (CR): H = High (75 -100% Pitted) T = Overall Plate Thickness

Data Column ID: VY2o M = Moderate (50 -75% Pitted) P1r = Thickness of steel at pit 1

Data Collection Date: 8/21/06 L = Low (0 - 50% Pitted) P1dia = Pit 1 diameter

Square Size of Steel Data: 6 inches Surface Type Outer Flange

				Sto		Water Quality Data									
Elevation	Т	P1r	P1dia	P2r	P2dia	P3r	P3dia	P4r	P4dia	CR	рН	Diss. Oxygen	Conduct- ivity	Turbidity	Temp
1 (+2.0)	0.384										\times	\times	\times	\times	\times
2 (0.0)	0.381	0.293	0.500	0.355	0.750	0.355	0.500	0.293	0.500	HIGH	\geq	\geq	\geq	$>\!\!<$	$\geq \!$
3 (-2.0)	0.379	0.307	0.375	0.338	0.375	0.369	0.250	0.338	0.250	HIGH					
4 (-4.0)	0.379	0.356	0.250	0.294	0.375	0.339	0.250	0.356	0.188	MOD					
5 (-6.0)															
6 (-8.0)															
7 (-10.0)															
8 (-15.0)															
9 (-20.0)															
10 (*)															

* Indicate elevation where data is required one (1) foot below the mud line.

Water Sample Data at -4.0 Below LWD

Water quality data at this entry to be taken at the mud line or bottom.

Notes: 1. See Plates 1 through 9 for locations of data.

6 feet

Total Suspended Solids:

2. All steel measurements are in inches to the nearest thousandth of an inch.

Hardness:

Chloride Ions:

3. All elevations are referenced from Low Water Datum = IGLD 1955

Total Iron:

Sulfate lons: